SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babe-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science in English

2. Information regarding the discipline

2.1 Name of the dis	.1 Name of the discipline (en) Cloud		oud Application Architecture				
(ro)		Arhitectura aplicatiilor cloud					
2.2 Course coordinate	coordinator		Lec	Lect Horea Adrian Grebla			
2.3 Seminar coordinator		Lect	Lect Horea Adrian Grebla				
2.4. Year of study	3	2.5 Semeste1	5	2.6. Type of evaluation	С	2.7 Type of	Optional
						discipline	
2.8 Code of the discipline MLE5153							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2	2	3.3	1 lab
		course		seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5	28	3.6	14
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship				4	
Evaluations					8
Other activities:					
3.7 Total individual study hours		58			

3.7 Total individual study hours	58
3.8 Total hours per semester	100
3.9 Number of ECTS credits	4

4. Prerequisites

4.1. curriculum	Computer Networks
	 Databases
	Web Programming
4.2. competencies	 Good programming skills in at least one programming language (Java, JavaScript, C#, etc).

5. Conditions (if necessary)

5.1. for the course	Course hall with projector	
5.2. for the seminar /lab	Computers with internet access, a modern browser and a programming	
activities	language environment	

6. Spec1fic competencies acqmred

o speci.	ac competencies acquire				
•••	Cl.5 Development of program units and corresponding documentation				
= °	C2.1 Identify adequate software systems development methodologies				
1B Q>	C4.3 Identify models and methods adequate to real life problem solving				
S S	C6 Design and administration of computer networks				
(l) (Q>	CTl Applying organized and efficient work rules, responsible attitude towards scientific/teaching domains in order to obtain a creative exploitation of own potential, while respecting the principles and rules of professional ethics				
Ø> ()	CT3 Use of effective methods and techniques for learning, information, research and capacity to exploit knowledge, to adapt to a dynamic society and communication in English language				

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	•	To introduce the students to cloud computing concepts, the motivation behind migrating to the cloud and the challenges such a migration entails. Walk through a relatable, real life use case and point out the benefits of using a public cloud provider in most commercial software endeavours.
7.2 Specific objective of the discipline	•	Become familiar with Amazon Web Services core offerings. Get hands on experience in developing cloud native applications.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to the cloud landscape	Exposure: description,	
Basic concepts, types	explanation, examples, debate	
Motivation		
 Providers 		
Pricing models		
 Layout and topology (regions, availability zones) 		
2. The IaaS model	Exposure: description,	
Virtual machines	explanation, examples, debate	
 Images 		
• Storage mechanisms (block, file)		
Backu ps		
3. Cloud networking	Exposure: description,	
 Private cloud networks 	explanation, examples, debate	
Firewalls and access lists		
 Network address translation 		

4. Scalability	Exposure: description,
Vertical vs Horizontal	explanation, examples, debate
 Load balancing 	
Auto-scaling	
5. Web capabilities	Exposure: description,
Static website hosting	explanation, examples, debate
Content distribution	
 (Dynamic) Domain name servers 	
6. Availability, disaster recovery	Exposure: description,
Resilience	explanation, examples, debate
Multi-AZ deployments	
Disaster recovery strategies	
7. Infrastructure security	Exposure: description,
 Users, roles, permissions 	explanation, examples, debate
8. The PaaS model	Exposure: description,
Managed runtimes	explanation, examples, debate
Container basics	
 Docker 	
9. Managed databases	Exposure: description,
Relational	explanation, examples, debate
• Key-value (Redis, S3)	
• Document (Mongo)	
10. Application security	Exposure: description,
OAuth	explanation, examples, debate
Identity providers	
11. Integration services	Exposure: description,
 Queues 	explanation, examples, debate
Pub-sub topics	
Email services	
12. Serverless	Exposure: description,
• Faas	explanation, examples, debate
Specific databases (Dynamo, Aurora)	
13. API Design	Exposure: description,
• REST	explanation, examples, debate
API Gateways	
14. Recap and closing	Examples, debate
Rihliography	

Bibliography

- 1. Thomas Erl, Ricardo Puttini, Zaigham Mahmood Cloud Computing: Concepts, Technology & Architecture, Prentice Hall, 1st edition, 2013
- 2. Thomas Erl , Robert Cope, Amin Naserpour Cloud Computing Design Patterns, Prentice Hall, 1st edition, 2015
- 3. Cornelia Davis Cloud Native Patterns: Designing change-tolerant software, Manning Publications, 1st edition, 2019
- 4. Michael J. Kavis Architecting the Cloud: Design Decisions for Cloud Computing Service Models, Wiley, 1st edition, 2014
- 5. Kief Morris Infrastructure as Code: Managing Servers in the Cloud, O'Reilly, 1st edition, 2016
- 6. Christopher Barnatt A Brief Guide to Cloud Computing, Robinson Press; 1st edition, 2010
- 7. Andrew S. Tanenbaum, Maarten van Steen Distributed Systems: Principles and Paradigms, Pearson Prentice Hall, 3rd edition, 2017

8.2 Seminar / laboratory	Teaching methods	Remarks

1. Introduction to the cloud landscape	Presentation, Dialogue, Case
• Regions	studies
• AZs	
AWS Management Console	
2. IaaS basics	Presentation, Dialogue, Case
• EC2 instances	studies
• User data	
Key pairs	
• AMI	
3. Cloud networking	Presentation, Dialogue, Case
• VPCs	studies
 Security groups 	
Auto-scaling groups	
 Load balancers 	
 Website hosting 	
4. PaaS basics	Presentation, Dialogue, Case
 Docker 	studies
• ECS	
• RDS	
5. Integration services	Presentation, Dialogue, Case
• SQS	studies
• SNS	
• SES	
• Cognito	
6. Serverless	Presentation, Dialogue, Case
• Lambda	studies
API Gateway	
7. Project grading and evaluation	Evaluation

Bibliography

- **1.** Andreas Wittig, Michael Wittig Amazon Web Services in Action, Manning Publications, 1st edition, 2015
- 2. Bert David AWS: Amazon Web Services Tutorial for Beginners, Independently published, 1st edition, 2018
- 3. AWS Educate httgs://aws.amazon.com/education/awseducate/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Similar courses exists in the studying program of major universities in Europe and abroad.
- The software organisations recognize the importance of the concepts discussed during this course for both the develoment of new a lications and mi ration of legacy and lications.

10. Evaluation

101 Livalaution			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	Know the applied	Colloquium, subject	50%

	technologies taught	presentation		
	during the course			
10.5 Seminar/lab activities	Be able to implement	Project presentation at the	50%	
	course concepts and	end of the semester		
	presented technologies			
10.6 Minimum performance standards				
At least grade 5 (from a scale of 1 to 10) at both presentation and laboratory project.				

Date Signature of course coordinator Signature of seminar coordinator

Date of approval Signature of the head of department