SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	"Babes-Bolyai" University
1.2 Faculty	Faculty of Mathematics and Computer science
1.3 Department	Department of Computer Science
1.4 Field of study	Informatics(Computer Science)
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

2. Information regarding the discipline

2.1 Name of the discipline Multi-paradigm programming languages							
2.2 Course coordinator Assoc.Prof.PhD. Niculescu Virginia							
2.3 Seminar coordinator				Assoc.Prof.PhD. Niculescu Virginia			
2.4. Year of study		2.5 Semester		2.6. Type of evaluation	C.	2.7 Type of discipline	Optional

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	1 sem. +1pr.
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6 seminar/laboratory	24
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					15
Additional documentation (in libraries, on electronic platforms, field documentation)					27
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					4
Evaluations				10	
Other activities:				-	

3.7 Total individual study hours	77
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 Fundamentals of Programming Object-Oriented Programming, Functional Programming Java, C++ programming
4.2. competencies	Programming skills and basic abilities for dealing with abstractions

5. Conditions (if necessary)

5.1. for the course	• projector
5.2. for the seminar	• projector

6. Specific competencies acquired

Professional competencies	• Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he is capable of stating this knowledge in a coherent form, that (s)he has correct habits of analysis, design of problems related to workflow systems.
Transversal competencies	 Good communication skills; concise and precise description, both oral and written. Independent work capabilities; able to fulfill different roles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Interpretation of mathematical and programming models.
discipline	 Enhance the students understanding of programming paradigms
	 To emphasize the relation between theory of programing paradigms
	with their concrete applications in languages
7.2 Specific objective of the	 Deepen the knowledge of programming in Java, C#, C++.
discipline	 Learn new programming languages.
	Introduction in Scala programming and other multiparadigm
	languages (Kotlin, Go, Ruby, Julia).

8. Content

8.1 Course	Teaching methods	Remarks
1. Programing paradigm overview	Exposure: description, explanation, examples, discussion of case studies	
2. Basics of Scala Programming	Exposure: description, explanation, examples, discussion of case studies	
3. Object oriented programing in Scala	Exposure: description, explanation, examples, discussion of case studies	
4. Functional programming in Scala	Exposure: description, explanation, examples, discussion of case studies	
5. Concurrency in Scala	Exposure: description, explanation, examples, discussion of case studies	

6.	Parallel programming paradigms in Scala	Exposure: description, explanation, examples, discussion of case studies
7.	Introduction in Scala coroutines	Exposure: description, explanation, examples, discussion of case studies
8.	Actor programming with Scala (Akka)	Exposure: description, explanation, examples, discussion of case studies
9.	Metaprogramming	Exposure: description, explanation, examples, discussion of case studies
10.	Dataflow programming	Exposure: description, explanation, examples, discussion of case studies
11.	Essay and project presentation	Exposure: description, explanation, examples, discussion of case studies
12.	Essay and project presentation	Exposure: description, explanation, examples, discussion of case studies
D'1 1'	•	

Bibliography

- 1. Michael Scott. Programming Language Pragmatics. 4th ed. Morgan Kaufmann, 2015
- 2. Martin Odersky, Lex Spoon, Bill Venners.Programming in Scala: A Comprehensive Step-by-Step Guide, 2nd Edition
- 3. Paul Chiusano and Runar Bjarnason Functional Programming in Scala, Mannon, 2014.
- 4. Bjarne Stroustrup: The C++ Programming Language Special Edition, Addison-Wesley, 2000
- 5. Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied Addison-Wesley Professional.2001
- 6. Georgy Pashkov Multi-Paradigm Programming with Modern C++. Packt Publishing.2020
- 7. David Vandevoorde, Douglas Gregor, Nicolai M. Josuttis. C++ Templates: The Complete Guide, 2nd Edition. Addison-Wesley Professional. 2017 Chapter: C++ Metaprogramming.
- 8. C.D. Marlin. Coroutines. A Programming Methodology, a Language Design and an Implementation. Springer-Verlag Berlin Heidelberg

8.2 Laborator	Teaching methods	Remarks
1. Scala simple example	Explanation, dialogue, case studies	The seminar is structured as 2 hours
2. Scala programming assignment 1	Dialogue, debate, case studies, examples, proofs	classes every second week

3. Scala programming assignment 2	Dialogue, debate, case studies, examples, proofs
4. Scala programming assignment 3	Dialogue, debate, explanation, examples
5. Student presentations	Dialogue, debate, explanation, examples
6. Student presentations	Dialogue, debate, explanation, examples

Bibliography

- 1. Michel Schinz and Philipp Haller. A Scala Tutorial for Java Programmers. https://docs.scala-lang.org/tutorials/scala-for-java-programmers.html
- 2. Scala Tutorial. https://www.tutorialspoint.com/scala/index.htm

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The content of the course is considered of interest by the software companies

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Laboratory assignments -	Presentations, Questions/ analysis	40%
10.5 Seminar	- Essay that presents a multiparadigm language and a mini project done in the chosen language.	-Presentation -discussion, critical analysis	60%

10.6 Minimum performance standards

➤ At least grade 5 (from a scale of 1 to 10) for the final grade.

Date	Signature of course coordinatorNiculescu Virginia	Signature of seminar coordinatorNiculescu Virginia	
Date of approval	Signature of the head of department		