syllabus

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science (in English)
Qualification	

2. Information regarding the discipline

2. Information regulating the discipline							
2.1 Name of the discipline (en)			Static Program Analysis				
(ro)							
2.2 Course coordinator			Prof.PhD. Simona Motogna				
2.3 Seminar coordinator			Prof.PhD. Simona Motogna				
2.4. Year of study	3	2.5 Semester	e 6 2.6. Type of C 2.7 Type of Option			Optional	
				evaluation		discipline	
2.8 Code of the		MLE5126					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	11ab
				seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6	12
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					
Tutorship					20
Evaluations					19
Other activities:					-
0.5.50 × 11 11 11 1 × 1 1		00			

3.7 Total individual study hours	89
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

	4.1. curriculum	•	Formal Languages and Compiler Design course	
4.2. competencies •		•	Basic knowledge of front-end and back end of a compiler	
		•	Medium programming skills	

5. Conditions (if necessary)

5.1. for the course	Room with projector
5.2. for the seminar /lab	 Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

o. Specia	te competencies acquired
Profe	C 4.1 Definition of concepts and basic principles of computer science, and of mathematical theories
ssion	C 4.2 Interpretation of mathematical and computer science models (formal)
al	C 4.4 Use of simulation to study the behaviour of models and to evaluate their performance
comn	

etenc ies	
Tran	CT1 Apply rules to: organized and efficient work, responsibilities of didactical and scientifical activ
svers	capitalization of own potential, while respecting principles and rules for professional ethics
al	CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and
comp	develop capabilities for capitalization of knowledge, accommodation to society requirements and
etenc	communication in English
ies	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand compiler design Be able to understand static analysis concepts Improved programming skills
7.2 Specific objective of the discipline	 Be able to apply static analysis techniques Be able to implement static analysis techniques

8. Content

8.1 Course	Teaching methods	Remarks
1. Static Analysis Tools: an introduction: principles,	Exposure:	
goals	description,	
	explanation,	
	examples, discussion	
	of case studies	
2. Dataflow analysis	Exposure:	
	description,	
	explanation,	
	examples, discussion	
	of case studies	
3. Abstract interpretations	Exposure:	
	description,	
	explanation,	
	examples, debate,	
	dialogue	
4. Interprocedural analysis	Exposure:	
	description,	
	explanation,	
	examples, proofs	
5. Symbolic execution	Exposure:	
	description,	
	explanation,	
	examples, discussion	
	of case studies	
6. Buffer Overflow Analysis	Exposure:	
	description,	
	explanation,	
	examples, discussion	
	of case studies	
7. Analysis of heap data structures	Exposure:	
	description,	
	explanation,	
	examples, discussion	
	of case studies	

8. Detecting security vulnerabilities	Exposure:
	description,
	explanation,
	examples, discussion
	of case studies
9. Invited lecture: how are static analysis tools used in	Exposure:
real life projects	description,
	explanation,
	examples, discussion
	of case studies
10. − 12. Project presentations	Exposure: discussion
	of case studies

Bibliography

- 1. A.V. AHO, D.J. ULLMAN Principles of computer design, Addison-Wesley, 1978.
- 2. A.V. AHO, D.J. ULLMAN The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.
- 3. D. GRIES Compiler construction for digital computers,, John Wiley, New York, 1971.
- 4. GRUNE, DICK BAL, H. JACOBS, C. LANGENDOEN, K.: Modern Compiler Design, John Wiley, 2000
- 5.Flemming Nielson, Hanne R. Nielson, Chris Hankin: Principles of Program Analysis. 2nd edition, Springer, 2005
- 6. Steven S. Muchnick, Neil D. Jones: Program Flow Analysis: Theory and Applications. Prentice Hall, 1981
- 7. Anders Møller and Michael I. Schwartzbach Static Program Analysis, Lecture notes,

https://cs.au.dk/~amoeller/spa/

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Case study: static analysis tool (part 1): features,	Laboratory	
techniques, applicability	assignment, case	
	study, conversation	
2. Case study: static analysis tool (part 1): apply for a	Laboratory	
program	assignment, case	
	study, conversation	
3. Choice of project topic. Problem specification	Laboratory	
	assignment, case	
	study, conversation	
4. Project analysis and design. – documentation	Laboratory	
	assignment, case	
	study, conversation	
5. Project implementation and testing	Laboratory	
	assignment, case	
	study, conversation	
6. Project presentations	Laboratory	
	assignment, case	
	study, conversation	

Bibliography

- 1. P. Emanuelsson, U. Nilsson: <u>A Comparative Study of Industrial</u> <u>Static Analysis Tools</u>, Technical Report 2008:3, Linköping University, Sweden, 2008
- 2. SonarQube documentation
- 3. PyLint documentation
- Other static analysis tools
- 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program
- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;

- The content of the course is considered the software companies as important for advanced programming skills
- The course provides a good theoretical background for further research in Software Engineering and Programming Fundamentals

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principleof the domain;apply the courseconceptsproblem solving	Continuous evaluation at course	10%
	- understand advanced topics in the field	Paper presentations	30%
10.5 Lab activities	- be able to implement course concepts and algorithms	Lab assignments	40%
10 () ()	- apply techniques for different classes of programming languages	Use of Static Analysis Tools	20%

10.6 Minimum performance standards

- At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.
- To be able to use and interpret results of Static Analysis tools
- > To be able to explain the concepts involved in static analysis methods

Date Signature of course coordinator Signature of seminar coordinator 27.04.2022 Assoc.prof.PhD. Simona Motogna Assoc.prof.PhD. Simona Motogna

Date of approval Signature of the head of department Prof.dr. Laura Dioșan