SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Nu				merical Calculus			
2.2 Course coordinator				Prof. Sanda Micula, PhD. Habil.			
2.3 Seminar coordinator				Prof. Sanda Micula, PhD. Habil.			
2.4. Year of	3	2.5	6	2.6. Type of E 2.7 Type of DF Compulsory			DF Compulsory
study		Semester		evaluation		discipline	
2.8 Course Coo	de	MLE002	28				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6 seminar/laboratory	24
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					15
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					12
Evaluations					25
Other activities:					-

3.7 Total individual study hours	127
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis
	Algebra
4.2. competencies	Logical thinking
	Average logical programming skills

5. Conditions (if necessary)

5.1. for the course	Lecture room with large blackboard and video projector
5.2. for the seminar /lab	Laboratory with Matlab installed
activities	

6. Specific competencies acquired

00 00 000000	e competencies act un cu			
	C3.3 Use of computer science and mathematical models and tools for solving specific problems			
lal ies	in the application field			
ion	C3.4 Data and model analysis			
ete	C4.1 Defining basic concepts, theory and mathematical models			
ofe np	C4.2 Interpretation of mathematical models			
Professional competencies	C4.3 Identifying the appropriate models and methods for solving real-life problems			
	C4.5 Embedding formal models in applications from various areas			
	CT1 Ability to conform to the requirements of organized and efficient work, to develop a			
Ø	responsible approach towards the academic and scientific fields, in order to make the most of			
Transversal competencies	one's own creative potential, while obeying the rules and principles of professional ethic			
ers				
nsv pet	CT3 Using efficient methods and techniques for learning, information, research and developing			
	capabilities for using knowledge, for adapting to a dynamic society and for communicating in			
E 3	Romanian and in a worldwide spoken language			

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquire basic knowledge and concepts of Numerical Analysis, with main focus on applications Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Become familiar and be able to work with various numerical algorithms and models Gain the ability to apply numerical algorithms to solve practical and real-life problems. Ability to use approximation and numerical features of various mathematical software

8. Content

8.1 Course	Teaching methods	Remarks
1. Preliminaries. Taylor polynomials. Errors, sources, propagation. Stability and conditioning of a problem. Divided and finite differences.	Interactive exposure, description, explanation, conversation, didactical demonstration	
2. Solution of systems of linear algebraic equations. Direct methods. Gaussian elimination. Backward and forward substitution. Factorization (LU, LUP, QR, Cholesky) methods. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	
3. Iterative methods. Jacobi and Gauss-Seidel methods. SOR method. Conditioning of a linear system. Ill-conditioned matrices.	Interactive exposure, description, explanation, conversation, didactical demonstration	
4. Approximation of functions. Polynomial interpolation. Lagrange interpolation, Lagrange fundamental polynomials. Error in Lagrange interpolation. Optimal choice of nodes. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	
5. Efficient computation of interpolation polynomials. Barycentric formula. Newton's divided and finite differences interpolation. Aitken's algorithm. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration	

6. Hermite interpolation. Interpolation with double nodes. General case. Error in Hermite interpolation. Special cases.	Interactive exposure, description, explanation, conversation, didactical demonstration
7. Birkhoff interpolation. Birkhoff fundamental polynomials. Peano's theorem and the error in Birkhoff interpolation. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration
8. Spline interpolation. Linear and cubic splines. Properties. Least squares approximation. Orthogonal polynomials.	Interactive exposure, description, explanation, conversation, didactical demonstration
9. Numerical differentiation and integration. Numerical differentiation formulas. Examples. Interpolatory and Newton-Cotes quadratures. Composite rectangle, trapezoidal and Simpson's rules. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration
10. Adaptive quadratures. Richardson extrapolation. Iterated quadratures. Romberg's method. Gaussian quadratures. Families of orthogonal polynomials. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration
11. Rootfinding for nonlinear equations. Iterative methods. Order of convergence. Bisection, secant and Newton's methods. Comparison between Newton's and secant methods. Aitken extrapolation. One-point iteration methods, successive approximations. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration
12. Newton's method for multiple roots. Newton's method for nonlinear systems. Examples.	Interactive exposure, description, explanation, conversation, didactical demonstration

Bibliography

- 1. K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons Inc., 1988.
- 2. K. E. Atkinson, W. Han, Elementary Numerical Analysis, Third Edition, John Wiley and Sons Inc., 2004.
- 3. S. Micula, R. Sobolu, M. Micula, Numerical Analysis with Maple (rom.), Academic Press, Cluj-Napoca, 2008.
- 4. R. Trîmbitaş, Numerical Analysis in Matlab, Cluj University Press, 2008.
- 5. W. Gautschi, Numerical Analysis, An Introduction, Birkhaeuser, Boston, 1997.
- 6. Gh. Coman, I. Chiorean, T. Cătinaș, Numerical Analysis, An Advanced Course, Cluj University Press, 2007.

8.2 Laboratory	Teaching methods	Remarks
1. Taylor polynomials. Errors.	Interactive exposure,	
	explanation, conversation,	
	individual and group work	
2. Newton's divided and finite differences.	Interactive exposure,	
	explanation, conversation,	
	individual and group work	
3. Linear algebraic systems. Gaussian elimination.	Interactive exposure,	
Factorizations. Backward and forward substitution.	explanation, conversation,	
	individual and group work	
4. Linear algebraic systems. Iterative methods. Jacobi,	Interactive exposure,	
Gauss-Seidel, SOR methods.	explanation, conversation,	
	individual and group work	

5. Lagrange interpolation. Lagrange fundamental	Interactive exposure,
polynomials. Barycentric formula.	explanation, conversation,
	individual and group work
6. Lagrange interpolation. Newton's form. Aitken's	Interactive exposure,
algorithm.	explanation, conversation,
	individual and group work
7. Hermite interpolation with double nodes.	Interactive exposure,
	explanation, conversation,
	individual and group work
8. Cubic spline interpolation.	Interactive exposure,
	explanation, conversation,
	individual and group work
9. Least squares approximation.	Interactive exposure,
	explanation, conversation,
	individual and group work
10. Newton-Cotes quadratures. Adaptive quadratures.	Interactive exposure,
Romberg's method.	explanation, conversation,
	individual and group work
11. Gaussian quadratures.	Interactive exposure,
	explanation, conversation,
	individual and group work
12. Numerical methods for nonlinear equations.	Interactive exposure,
	explanation, conversation,
	individual and group work

Bibliography

- 1. K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley and Sons Inc., 1988.
- 2. K. E. Atkinson, W. Han, Elementary Numerical Analysis, Third Edition, John Wiley and Sons Inc., 2004.
- 3. S. Micula, R. Sobolu, M. Micula, Numerical Analysis with Maple (rom.), Academic Press, Cluj-Napoca, 2008.
- 4. R. Trîmbitaş, Numerical Analysis in Matlab, Cluj University Press, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors;
- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research;
- The problem solving abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles and notions in Numerical Analysis; apply correctly the course concepts on various applications problem solving 	Written exam	70%

10.6 Lab activities	 be able to implement course concepts and algorithms apply numerical algorithms to solve practical and real-life problems 	- participation in discussing and solving problems throughout the semester		30%			
10.7 Minimum performance standards							
A grade of 5 or above (on a scale from 1 to 10) on <u>each</u> of the activities mentioned above (written exam, lab evaluation)							
Date	Signature of course coordinator		Signature of seminar coordinator				
26.04.2023	Prof. Sanda Micula, Ph	Prof. Sanda Micula, PhD. Habil. Prof. San		Micula, PhD. Habil.			
Date of approval		Signature of the head of department					