SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University	
institution		
1.2 Faculty	Faculty of Mathematics and Computer Science	
1.3 Department	Department of Computer Science	
1.4 Field of study	Computer Science	
1.5 Study cycle	Bachelor	
1.6 Study programme /	Computer Science	
Qualification		

2. Information regarding the discipline

2.1 Name of the discipline C				omputer Networks					
2.2 Course coordinator				PhD. Assoc. Prof. Adrian Sergiu DARABANT					
2.3 Seminar coordinator				PhD. Assoc. Prof. Adrian Sergiu DARABANT					
2.4. Year of 2 2.5			3	2.6. Type ofE2.7 Type ofCompulsory			Compulsory		
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	3.2 Of whi	ch: course	2	3.3	2
					seminar/laboratory	
3.4 Total hours in the curriculum		3.5 Of whi	ch: course	28	3.6	28
					seminar/laboratory	
Time allotment:						hours
Learning using manual, course support, bibliography, course notes						20
Additional documentation (in libraries, on electronic platforms, field documentation)						20
Preparation for seminars/labs, homework, papers, portfolios and essays						30
Tutorship						11
Evaluations						13
Other activities:						-
3.7 Total individual study hours 94						•

5.7 Total mulvidual study nouis	24
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Computer Networks, Operating Systems, Computer System Architecture
4.2. competencies	• Good knowledge of TCP/IP, basis of network security, data encryption algorithms.

5. Conditions (if necessary)

5.1. for the course	Classroom with network and Internet access and to laboratory
	equipment.

6. Specific	c competencies acquired
Professional competencies	 C6.1 Identification of basic concepts and models in computer networks and computer systems C6.2 Identification and explanation of basic architectures for systems and computer networks management. C6.5 Implementation and programming of computer networking projects. C6.6 Defining and implementing network device security policies.
Transversal competencies	 CT1 Applying organized and efficient work rules, responsible attitude towards scientific/ teaching domains in order to obtain a creative exploitation of own potential, while respecting the principles and rules of professional ethics CT3 Use of effective methods and techniques for learning, information, research and capacity to exploit knowledge, to adapt to a dynamic society and communication in Romanian language and in a foreign language CT4 Collaboration and data information sharing using digital technologies. CT5 Definition and application of behavioral norms in computer networks – Netiquette. CT6 Solving networking practical problems and situations.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Be able to understand the fundamental principles and inner workings of a computer network and of Internet
7.2 Specific objective of the discipline	 Learning the underlying concepts and principles of modern computer networks with emphasis on protocols, architectures, and implementation issues; Learning to program networking applications using TCP/IP Learning and understand the layered Internet protocols architecture Have all the basis knowledge about TCP/IP – theoretical aspects and programming communicating applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Computer Networks Introduction. Definition.	Exposure: description,	
Examples. Network Topologies.	explanation,	
2. The socket programming API. Network	Exposure: description,	
programming using TCP and UDP.	explanation, examples,	
3. Protocols: definition. Protocol layers. The	Exposure: description,	
OSI reference model. The TCP/IP layered	explanation, examples, debate,	
model.	dialogue	
4. The functions and services of the IP layer.	Exposure: description,	
Structure of an IP datagram. IP addressing	explanation, examples,	
	discussion of case studies	

(classfull). Datagram check summing. The		
ARP protocol.		
5. The concept of Subnetworks and	Exposure: description,	
Supernetworks. CIDR. Network masks.	explanation, examples, proofs	
6. The UDP protocol and services. The structure	Exposure: description,	
of an UDP datagram UDP ports and	explanation, examples,	
processes.		
7. The TCP protocol. Structure of a TCP	Exposure: description,	
segment. Principles of TCP data	explanation, discussion of case	
transmission.	studies	
8. The TCP Sliding Window mechanism. Flow	Exposure: description,	
Control. Congestion avoidance.	explanation, examples	
9. Broadcast and multicast communication. The	Exposure: description,	
ICMP protocol. Error and network state	explanation, examples,	
signaling.	discussion of case studies	
10. The application layer. HTTP, SMTP, FTP	Exposure: description,	
	explanation, examples, debate	
11. The Internet Domain Name System. The	Exposure: description,	
DNS protocol.	explanation, examples,	
	discussion of case studies	
12. Network routing. Distance based and link	Exposure: description,	
state based routing algorithms. Routing	explanation, examples,	
protocols: RIP, BGP, OSPF.	discussion of case studies	
13. The physical layer. Transmission media.	Exposure: description,	
Characteristics, fiber networks, wireless	explanation, examples,	
networks. Error detection and correction.	discussion of case studies	
14. Network Security; Netiquette and computer	Exposure: description, examples,	
network behavior norms.	discussion of case studies,	
Bibliography	discussion of cuse statics,	
1. J. Kurose, K. Ross, Computer Networking: A Top	Down Approach, Addison-Wesley,	rev2.3.4.2002-
2007.	bown reprotein, ridenson westey,	1012,3,12002
2. Douglas E. Comer, Internetworking with TCP/IP		
a. Vol 1- Principles, Protocols, and Architectu	ıre	
b. Vol 3- Client-Server Programming and Ap		
3. G.R.Wright, R. Stevens, TCP/IP Illustrated – vol 1		
4. Matt Naugle, Illustrated TCP/IP – A Graphic Guid		ons. 1999
5. W. Richard Stevens, Bill Fenner, Andrew M. Rudo	• • •	
Third Edition: The Sockets Networking API		, oranie i,
6. Peterson, Larry - Davie, Bruce: Computer Network	s: A Systems Approach Morgan K	aufman (3rd
ed.), 2003.	in the second represent the sum is	usiliani, (olu
7. Stallings, William: Data and Computer Communic	ations Prentice Hall (6th ed.) 2000)
8. Tanenbaum, Andrew S.: Computer Networks. Prei		
9. Dr. Nasrine Abushakra: Netiquette: Modern Mann		nate Guide To
Online Etiquette, ISBN 1523817569, 2016	ere i er i renouenn world. The Ottin	
Cinine Euqueue, 1511(152501750), 2010		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory Configuration. Necessary tools,	Explanation, dialogue, case	
Virtual machines and build systems;	studies, example, proofs	
2. A simple client-server TCP application;	Dialogue, debate, case studies	
3. Concurrent TCP client-server application;	Dialogue, debate, case studies,	
5. Concurrent rer chent-server applications,	examples, proofs	
4. Concurrent Multiplexed TCP- Servers. The select	Dialogue, debate, case studies,	
1		
call. Network debugging – wireshark	examples Dialogue debate asso studios	
5. Simple UDP client-server; Security Handling;	Dialogue, debate, case studies,	
	examples	

6. Complex/Concurrent UDP applications. Ping. Traceroute. Ipconfig/ifconfig.	Dialogue, debate, case studies, examples
7. Mid term evaluation;	Dialogue, debate, case studies, examples
8. Network Simulation. Packet Tracer installation.	Explanation, dialogue, case studies
9. Packet Tracer simple network simulation.	Explanation, dialogue, case studies, examples
10. Packet Tracer - Physical/logical network design.	Explanation, dialogue, case studies, examples
11. Packet Tracer – NAT	Testing data, discussion, evaluation
12. Packet Tracer – RIP Routing	Explanation, dialogue, case studies
13. Packet Tracer – Complex design	discussion, evaluation
14. Lab Evaluation.	Explanation, dialogue, case studies

Bibliography

- 1. Douglas E. Comer, Internetworking with TCP/IP Vol 3- Client-Server Programming and Applications
- 2. W. Richard Stevens, Bill Fenner, Andrew M. Rudoff, UNIX® Network Programming Volume 1, Third Edition: The Sockets Networking API
- 3. Cisco Networking Academy Classes, http://cisco.netacad.net

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course covers the most important aspects necessary for a network engineer/architect in a network specialized company.

10. Evaluation

Type of activity		10.1 Evaluation criteria		10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course		 know the basic principle of computer networks theory; apply the course concepts problem solving 		Written exam- Moodle Test	50%
10.5 Seminar/lal activities	b	- TCP/IP programming skills and network simulation knowledge -Mid-term and final term lab tests		50%	
10.6 Minimum	performan	ce standards			
> At least	grade 5 (fi	rom a scale of 1 to 10) at both writt	en exa	am and laboratory ass	sessments.
·		course coordinator		gnature of seminar co	
Date of approvalSignature of the head of department					

.....

.....