
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babeş-Bolyai University of Cluj-Napoca

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Departament Departament of Computer Science

1.4 Field of study Computer Science

1.5 Ciclul de studii Bachelor

1.6 Study cycle / Qualification Computer Science - English

2. Information regarding the discipline

2.1 Name of the discipline Object Oriented Programming

2.2 Course coordinator Assoc. Prof. PhD Bocicor Maria Iuliana

2.3 Seminar coordinator Assoc. Prof. PhD Bocicor Maria Iuliana

2.4 Year of

study

1 2.5 Semester 2 2.6. Type of

evaluation

E 2.7. Type of

discipline

Compulsory

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 5 Of which: 3.2

course

2 3.3 seminar/laboratory 1sem

2 lab

3.4 Total hours in the curriculum 70 Of which: 3.5

course

28 3.6 seminar/laboratory 14+

28

Time allotment: hours

Learning using manual, course support, bibliography, course notes 20

Additional documentation (in libraries, on electronic platforms, field documentation) 5

Preparation for seminars/labs, homework, papers, portfolios and essays 19

Tutorship 4

Evaluations 7

Other activities:

3.7 Total individual study hours 55

3.8 Total hours per semester 125

3.9 Number of ECTS credits 5

4. Prerequisites (if necessary)

4.1 curriculum Fundamentals of Programming

4.2 competencies Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1 For the course • Class room with projector

5.2 For the seminar/lab

activities

• Laboratory with computers; C++ and programming language and

Qt library

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

• C1.1 Description of programming paradigms and of language specific mechanisms, as

well as identification of syntactic and semantic differences.

• C1.2 Explanation of existing software applications, on different levels of abstraction

(architecture, classes, methods) using adequate basic knowledge.

• C1.3 Elaboration of adequate source codes and testing of components in a given

programming language, based on some given specifications.

• C1.4 Testing applications based on testing plans.

• C1.5 Developing units of programs and corresponding documentations.

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

• CT1 Application of efficient and rigorous working rules, manifest responsible attitudes

towards the scientific and didactic fields, respecting the professional and ethical

principles.

• CT2 Use of efficient methods and techniques for learning, information, research and

development of abilities for knowledge exploitation, for adapting to the needs of a

dynamic society and for communication in Romanian as well as in a widely used foreign

language.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Basic elements in C

• Basic elements of C/C++ language

• Lexical elements. Operators. Conversions

• Data types. Variables. Constants

• Visibility scope and lifetime of the variables

• C++ Statements

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

7.1 General objective of

the discipline
• To prepare an object-oriented design of small/medium scale

problems and to learn the C++ programming language, as well as

to create graphical user interfaces using Qt.

7.2 Specific objectives of

the discipline

• To demonstrate the differences between traditional imperative

design and object-oriented design.

• To explain class structures as fundamental, modular building blocks.

• To understand the role of inheritance, polymorphism, dynamic

binding and generic structures in building reusable code.

• To explain and to use defensive programming strategies, employing

formal assertions and exception handling.

• To write small/medium scale C++ programs using Qt.

• To use classes written by other programmers when constructing their

systems.

• Function declaration and definition. Function

overloading. Inline functions

2. Modular programming in C/C++

• Functions. Parameters

• Pointers and memory management

• Function pointers

• Header files. Libraries

• Modular implementations of ADTs

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

3. Object oriented programming in C++

• Classes and objects

• Defining classes

• Object creation and destruction

• Operator overloading

• Static and friend elements

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

4. Templates and the Standard Template Library

• Function templates

• Class templates

• Containers, iterators in STL

• STL algorithms

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

5. Inheritance

• Simple inheritance and derived classes

• Special functions in classes and inheritance

• Substitution principle

• Method overriding

• Multiple inheritance

• UML class diagrams and relations

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

6. Polymorphism

• Inheritance, polymorphism

• Static and dynamic binding

• Virtual methods

• Upcasting and downcasting

• Abstract classes

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

7. Streams and exception handling

• Input/Output streams

• Insertion and extraction operators

• Formatting. Manipulators. Flags

• Text files

• Exception handling. Exception-safe code

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

8. Resource management and RAII

• Resource Acquisition Is Initialization (RAII)

• Smart pointers

• RAII in STL. Smart pointers in STL

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

9. Graphical User Interfaces (GUI)

• Qt Toolkit: installation, Qt modules and instruments

• Qt GUI components

• Layout management

• Qt Designer

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

10. Event driven programming elements

• Callbacks

• Events. Signals and slots in Qt

• GUI design

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

11. Event driven programming elements

• Model View Controller pattern

• Models and Views in Qt

• Using predefined models. Implementing custom models

• Case study: Gene manager application

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

12. Design patterns

• Creational, structural, behavioural patterns

• Examples

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

13. Design patterns

• Adapter pattern

• Observer pattern

• Iterator pattern

• Composite pattern

• Strategy pattern

• Case study application and examples

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

14. Revision

• Revision of the most important topics covered by the

course

• Examination guide

• Interactive exposure

• Explanation

• Conversation

• Examples

• Didactical

demonstration

Bibliography

1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.

2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare aplicate,

Editura Teora, 2002.

4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),

Addison-Wesley, 2005.

5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley,

1995.

6. B. Stroustrup. A Tour of C++, Addison Wesley, 2013.

7. C++ reference (http://en.cppreference.com/w/).

8. Qt Documentation (http://doc.qt.io/qt-5/).

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Longman Publishing, 1995.

8.2 Seminar Teaching Methods Remarks

1. Simple problems in C. Functions. Structures and

vectors.
• Interactive exposure The

seminar is

http://en.cppreference.com/w/
http://doc.qt.io/qt-5/

2. Modular programming. • Explanation

• Conversation

• Examples

• Didactical demonstration

structured

as a 2 hour

class, every

2 weeks.

3. Classes. Operator overloading. User defined objects as

class data members. Templates (dynamic vector).

4. Inheritance, polymorphism.

5. Files, exceptions. STL containers, iterators, algorithms.

6. Graphical User Interfaces

7. Complex problems. Implementation based on UML

diagrams. Design patterns.

Bibliography

1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.

2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare aplicate,

Editura Teora, 2002.

4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),

Addison-Wesley, 2005.

5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-Wesley,

1995.

6. B. Stroustrup. A Tour of C++, Addison Wesley, 2013.

7. C++ reference (http://en.cppreference.com/w/).

8. Qt Documentation (http://doc.qt.io/qt-5/).

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Longman Publishing, 1995.

8.3 Laboratory Teaching Methods Remarks

1. Setting up a C++ compiler (MSVC/MinGW) and an IDE

(Visual Studio). C/C++ general aspects.

• Explanation

• Conversation

• The laboratory

is structured as

weekly 2 hour

classes.

• Laboratory

assignments are

due 1 week after

assignment.

2. Simple problems (in C).

3. Feature-driven software development process. Layered

architecture. Test driven development. Modular

programming. (I)

4. Feature-driven software development process. Layered

architecture. Test driven development. Modular

programming. (II)

5. Object oriented programming in C++. (I)

6. Object oriented programming in C++. (II)

7. Laboratory test.

8. Inheritance and polymorphism.

9. Text Files, exceptions. STL containers, iterators and

algorithms.

10. Laboratory test.

11. Qt Graphical User Interfaces. (I)

12. Qt Graphical User Interfaces. (II)

13. Laboratory test.

14. Assignment delivery time.

Bibliography

1. B. Stroustrup. The C++ Programming Language, Addison Wesley, 1998.

2. Bruce Eckel. Thinking in C++, Prentice Hall, 1995.

3. A. Alexandrescu. Programarea moderna in C++: Programare generica si modele de proiectare

aplicate, Editura Teora, 2002.

4. S. Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd Edition),

Addison-Wesley, 2005.

http://en.cppreference.com/w/
http://doc.qt.io/qt-5/

5. S. Meyers. More effective C++: 35 New Ways to Improve Your Programs and Designs, Addison-

Wesley, 1995.

6. B. Stroustrup. A Tour of C++, Addison Wesley, 2013.

7. C++ reference (http://en.cppreference.com/w/).

8. Qt Documentation (http://doc.qt.io/qt-5/).

9. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley Longman Publishing, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program.

The course follows the ACM Curricula Recommendations for Computer Science studies.

The course exists in the studying program of all major universities in Romania and abroad.

The content of the course is considered by the software companies as important for average object oriented

programming skills.

10. Evaluation

Type of activity 10.1 Evaluation Criteria 10.2 Evaluation Methods 10.3 Share in the

grade (%)

10.4 Lecture The correctness and

completeness of the

accumulated knowledge and

the capacity to design and

implement correct C++

programs.

Written examination

(regular session)

30%

10.5 Seminar/

Laboratory

Be able to design, test and

debug a C++ program with a

graphical user interface.

Practical examination

(regular session)

30%

Correctness of delivered

laboratory assignments and

laboratory tests.

Program and

documentation portfolio.

Observation during the

semester. Laboratory

tests.

40%

10.6 Minimum performance standards

• Each student has to prove that they acquired an acceptable level of knowledge and understanding of

the core concepts taught in the class, that they are capable of using knowledge in a coherent form, that

they have the ability to establish certain connections and to use the knowledge in solving different

problems in object oriented programming in C++.

• For participating at the examination attendance is compulsory for seminar and for laboratory activities,

as follows: minimum 5 attendances for seminar and minimum 12 attendances for laboratory activities.

• Successfully passing of the examination is conditioned by a minimum grade of 5 for each of the

following: laboratory activity, practical test and written examination.

Date Signature of course coordinator Signature of seminar coordinator

06.07.2023 Assoc. Prof. PhD. Bocicor Maria Iuliana Assoc. Prof. PhD. Bocicor Maria Iuliana

Date of approval Signature of the head of department

 Prof. PhD. Laura Diosan

http://en.cppreference.com/w/
http://doc.qt.io/qt-5/

