1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Computer Science

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the	dis	cipline		Algebra			
2.2 Course coor	din	ator	tor Prof.PhD. Septimiu Crivei				
2.3 Seminar coo	ordi	nator		Prof.PhD. Septimiu Crivei			
2.4. Year of	1	2.5	1	2.6. Type of	VP	2.7 Type of	DC
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2	
				seminar/laboratory		
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28	
				seminar/laboratory		
Time allotment:						
Learning using manual, course suppor	t, bił	oliography, course notes	5		28	
Additional documentation (in libraries	s, on	electronic platforms, fie	eld do	cumentation)	14	
Preparation for seminars/labs, homew	ork, j	papers, portfolios and e	ssays		28	
Tutorship						
Evaluations						
Other activities:					0	
3.7 Total individual study hours 94						
3.8 Total hours 150						
per semester						
3.9 Number of 6						
ECTS credits						

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

-	
Professional competencies	 C3.1 Description of concepts, theories and models used in the application field C4.3 Identification of adequate models and methods for solving real problems
Transversal competencies	CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups

7. Objectives of the discipline (outcome of the acquired competencies)

······································	······································
7.1 General objective of the	\Box To introduce the basic notions of linear algebra as well as some
discipline	of its applications to computer science
7.2 Specific objective of the	□ To present some applications of linear algebra to computer
discipline	science

8. Content

8.1 Course	Teaching methods	Remarks
1. Functions. Equivalence relations and	interactive exposure, explanation,	
partitions	didactical demonstration	
2. Binary operations. Groups, subgroups, group	interactive exposure, explanation,	
homomorphisms	didactical demonstration	
3. Rings and fields, subrings and subfields, ring	interactive exposure, explanation,	
homomorphisms	didactical demonstration	
4. Vector spaces, examples. Subspaces. Linear	interactive exposure, explanation,	
maps	didactical demonstration	
5. Linear dependence and independence. Bases,	interactive exposure, explanation,	
dimension. Steinitz theorem	didactical demonstration	
6. Bases and coordinates. Dimension related	interactive exposure, explanation,	
formulas	didactical demonstration	
7. Elementary operations. Matrices and	interactive exposure, explanation,	
determinants	didactical demonstration	
8. Rank and inverse of a matrix. Matrix of a list	interactive exposure, explanation,	
of vectors	didactical demonstration	
9. Matrix of a linear map. Change of basis	interactive exposure, explanation,	
	didactical demonstration	
10. Systems of linear equations, solving methods	interactive exposure, explanation,	
	didactical demonstration	
11. Eigenvectors and eigenvalues	interactive exposure, explanation,	
	didactical demonstration	
12. Linear codes, examples. Generator matrix	interactive exposure, conversation	
and parity-check matrix		

13. Decoding linear codes	interactive exposure, conversation			
14. Applications of Algebra to Computer Science	interactive exposure, conversation			
Bibliography				
1. G. Calugareanu, Lectii de algebra liniara, Lito UBB, Cluj-N	Vapoca, 1995.			
2. S. Crivei, Basic linear algebra, Cluj University Press, Cluj-	Napoca, 2022.			
3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, E	ditura Univ. Bucuresti, 2005.			
4. J. Gilbert, L. Gilbert, Elements of modern algebra, PWS-Ke	ent, Boston, 1992.			
5. W. J. Gilbert, W. K. Nicholson, Modern Algebra with Appli	cations, John Wiley, 2004.			
6. P. N. Klein, Coding the Matrix. Linear Algebra through App	plications to Computer Science,			
Newtonian Press, 2013.				
8.2 Seminar / laboratory	Teaching methods	Remarks		
1. Functions. Equivalence relations and	interactive exposure, conversation			
partitions				
2. Binary operations. Groups, subgroups, group	interactive exposure, conversation			
homomorphisms				
3. Rings and fields, subrings and subfields, ring	interactive exposure, conversation			
homomorphisms				
4. Vector spaces, examples. Subspaces. Linear	interactive exposure, conversation			
maps				
5. Linear dependence and independence. Bases,	interactive exposure, conversation			
dimension. Steinitz theorem				
6. Bases and coordinates. Dimension related	interactive exposure, conversation			
formulas				
7. Elementary operations. Matrices and	interactive exposure, conversation			
determinants				
8. Rank and inverse of a matrix. Matrix of a list	interactive exposure, conversation			
of vectors				
9. Matrix of a linear map. Change of basis	interactive exposure, conversation			
10. Systems of linear equations, solving methods	interactive exposure, conversation			
11. Eigenvectors and eigenvalues	interactive exposure, conversation			
12. Linear codes, examples. Generator matrix	interactive exposure, conversation			
and parity-check matrix				
13. Decoding linear codes	interactive exposure, conversation			
14. Applications of Algebra to Computer Science interactive exposure, conversation				
Bibliography				

1. S. Crivei, Basic linear algebra, Cluj University Press, Cluj-Napoca, 2022.

2. W. J. Gilbert, W. K. Nicholson, Modern Algebra with Applications, John Wiley, 2004.

3. P. N. Klein, Coding the Matrix. Linear Algebra through Applications to Computer Science, Newtonian Press, 2013.

4. I. Purdea, C. Pelea, Probleme de algebra, Editura EIKON, Cluj-Napoca, 2008.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The contents is directed towards applications of linear algebra to computer science.

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	Knowledge of basic concepts, examples	Exam	25	
10.5 Seminar/lab	Problem solving	Exam, assessments	75	
10.6 Minimum performance standards				
Grade 5				

Date	Signature of course coordinator	Signature of seminar coordinator
26.04.2023	Prof. PhD. Septimiu CRIVEI	Prof. PhD. Septimiu CRIVEI

Date of approval

Signature of the head of department

Prof.PhD. Andrei MARCUS