SYLLABUS

1. Information regarang the p	8
1.1 Higher education	Babeș-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Computer Science
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline		Μ	Mathematical Analysis				
2.2 Course coordina	ator		Lect. dr. Mihai Nechi				
2.3 Seminar coordin	nator		Lect. dr. Mihai Nechita				
2.4. Year of study	1	2.5 Semester	1	2.6. Type of evaluation	Ε	2.7 Type of discipline	DC
2.8 Code of the discipline MLE0002					·		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					28
Additional documentation (in libraries, on electronic platforms, field documentation)					8
Preparation for seminars/labs, homework, papers, portfolios and essays					42
Tutorship					10
Evaluations					6
Other activities:					-
3.7 Total individual study hours 94					
150					

3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Basic knowledge of high school calculus
4.2. competencies	• Computing limits (sequences and functions), derivatives, antiderivatives

5. Conditions (if necessary)

5.1. for the course	Lecture room with blackboard and projector
5.2. for the seminar /lab	Classroom with blackboard
activities	

6. Specific competencies acquired

ies	Understanding fundamental concepts and results in mathematical analysis.
Professional competencies	• Applying calculus methods to problems in optimization, statistics, machine learning.
Ň	• Efficient and productive work rules, applied in didactic-scientific domains.
Transversal competencies	• Methods and techniques for research and for presenting one's work.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To acquire elementary knowledge about differential and integral calculus for real-valued functions of one or several real variables.
7.2 Specific objective of the discipline	 Sequences and series of real numbers Power series Taylor series Riemann integrals, improper integrals Partial derivatives. Gradient. Higher order derivatives. Extremum points Gradient descent methods Constrained optimization Double integrals and triple integrals

8. Content

8.1 Course	Teaching methods	Remarks
1. Real numbers: basic concepts	Exposition, proofs, examples	
2. Sequences of real numbers	Exposition, proofs, examples	
3. Series of real numbers (I)	Exposition, proofs, examples	
4. Series of real numbers (II). Power series	Exposition, proofs, examples	
5. Functions of one variable: limits, continuity, differentiability.	Exposition, proofs, examples	
6. Higher order derivatives. Taylor series	Exposition, proofs, examples	
7. Riemann integrals. Improper integrals	Exposition, proofs, examples	
8. The n-dimensional Euclidean space	Exposition, proofs, examples	

9. Functions of several variables: limits and continuity	Exposition, proofs, examples	
10. Partial derivatives and differentiability. Gradient descent	Exposition, proofs, examples	
11. Higher order derivatives. Hessian matrix. Local extremum points	Exposition, proofs, examples	
12. Optimization with constraints. Lagrange multipliers	Exposition, proofs, examples	
13. Double integrals. Change of variables	Exposition, proofs, examples	
14. Triple integrals. Change of variables	Exposition, proofs, examples	
Bibliography		
[1] M. Nechita, Lecture notes for mathematical analysi	is 2023	
[2] W. Rudin, Principles of Mathematical Analysis 3rd		
[3] T. Tao, Analysis I, Springer, 2016.		
[4] J.E. Marsden, A. Tromba, Vector Calculus 6th ed,	W H Freeman and Company 2012	
[5] M. Oberguggenberger, A. Ostermann, Analysis for	± • ·	
[6] G. Strang, Linear Algebra and Learning from Data		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Real numbers	Problem-based instruction, debate,	Remarks
1. Real numbers	mathematical proofs	
2. Sequences of real numbers	Problem-based instruction, debate,	
2. Sequences of real numbers	mathematical proofs	
3. Series of real numbers (I)	Problem-based instruction, debate,	
5. Series of feat numbers (1)		
4 Carries of real numbers (II) Dower series	mathematical proofs	
4. Series of real numbers (II). Power series	Problem-based instruction, debate,	
	mathematical proofs	
5. Functions of one variable: limits, continuity,	Problem-based instruction, debate,	
differentiability.	mathematical proofs	
6. Higher order derivatives. Taylor series	Problem-based instruction, debate,	
	mathematical proofs	
7. Riemann integrals. Improper integrals	Problem-based instruction, debate,	
	mathematical proofs	
8. The n-dimensional Euclidean space	Problem-based instruction, debate,	
	mathematical proofs	
9. Functions of several variables: limits and	Problem-based instruction, debate,	
continuity	mathematical proofs	
10. Partial derivatives and differentiability.	Problem-based instruction, debate,	
Gradient descent	mathematical proofs	
11. Higher order derivatives. Hessian matrix.	Problem-based instruction, debate,	
Local extremum points	mathematical proofs	
12. Optimization with constraints. Lagrange	Problem-based instruction, debate,	
multipliers	mathematical proofs	
13. Double integrals. Change of variables	Problem-based instruction, debate,	
	mathematical proofs	
14. Triple integrals. Change of variables	Problem-based instruction, debate,	
Bibliography	mathematical proofs	<u> </u>

Bibliography

- [1] W.J. Kaczor, M.T. Nowak, Problems in Mathematical Analysis, AMS, 2000, 2001, 2003.
- [2] P.D. Lax, M.S. Terrell, Calculus with Applications, Springer, 2014.
- [3] J.E. Marsden, A. Tromba, Vector Calculus 6th ed, W.H. Freeman and Company, 2012
- [4] G. Procopiuc, Probleme de analiză matematică, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course provides a fundamental background in mathematical analysis that is essential for applications in optimization, statistics, machine learning and data science. It is similar to introductory courses at top universities worldwide.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Knowledge of fundamental	Exam	50%		
	theoretical results.	Midterm test	30%		
	Problem solving				
10.5 Seminar/lab activities	Problem solving	Seminar activity	10%		
		Homework	10%		
		Extra homework	10%		
10.6 Minimum performance standards					
➢ Attendance at 75% of the seminars.					
➢ Final grade should be greater or equal to 5.					

Date	Signature of course coordinator	Signature of seminar coordinator
Date of approval	Signature of	the head of department