SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Applications of Computational Linguistics					
2.2 Course coor	2.2 Course coordinator Lecturer PhD. Dana Lupsa							
2.3 Seminar coordinator				Lecturer PhD. Dana Lupsa				
2.4. Year of	2	2.5	3	2.6. Type of E 2.7 Type of Compulsory				
study		Semester		evaluation discipline				

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1sem
				seminar/laboratory	+1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					44
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					20
Evaluations				20	
Other activities:					
0.55		4.4.4			ı

3.7 Total individual study hours	144
3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Average programming skills
	Knowledge of data structures

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	•	Knowledge, understanding and use of IR concepts and their algorithms Knowledge, understanding and use of MT systems
Transversal competencies	•	Perform Internet-based research. Ability to use techniques specific to information retrieval and machine translation.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Understand how IR and MT systems works Identify techniques for information retrieval, language translation
7.2 Specific objective of the discipline	 Explain basic information storage and retrieval concepts. Describe what issues are specific to efficient information retrieval. Perform Internet-based research. Design and implement a small to medium size information storage and retrieval system, or digital library. Understand techniques for information retrieval, language translation Study the usage of corpora. Identify examples of corpora for MT

8. Content

8.1 Course	Teaching methods	Remarks
1. Ontologies	Exposure, examples,	
	discussion	
2. Information retrieval. A first view. Vector	Exposure, examples,	
space model (VSM)	discussion	
3. Boolean model. Extensions.	Exposure, examples,	
	discussion	
4. Information Storage and Retrieval: Inverted	Exposure, examples,	
Index; problems related to MultiWord	discussion	
expressions		
5. 5.1 Statistical properties of texts. 5.2 Vector	Exposure,	
similarity: issues	description,	
	explanation,	
	examples, case	
	studies	

6. 6.1 Dictionaries and tolerant retrieval 6.2	Exposure,
Meta-data, fields and zones	description,
	explanation,
	examples, case
	studies
7. Evaluation in IR	Exposure,
	description,
	explanation,
	examples, case
	studies
8. Semantic aspects	Exposure,
	description,
	explanation,
	examples, case
	studies
9. Relevance feedback. Query expansion.	Exposure,
	description,
	explanation,
	examples, case
	studies
10. Probabilistic retrieval	Exposure, examples,
	discussion
11. Language models	Exposure, examples,
	discussion
12. Web as graph: link analysis	
13. Efficient scoring and ranking: issues. Inexact	Description,
top k retrieval	examples, case
	studies, discussion
14. Machine translation (MT).	Exposure,
	description,
	explanation,
	examples, case
	studies, discussion

Bibliography

- 1. ALLEN, J.F. Natural Language Semantics, Wiley-Blackwell; 1 edition, 2001
- 2. D. Arnold, L. Balkan, S. Meijer, R. Humphreys, L. Sadler, *Machine Translation: An Introductory Guide, Manchester*, UK: NEC Blackwell, 1994.
- 3. R. BAEZA-YATES, B. RIBEIRO-NETO, Modern Information Retrieval, Addison-Wesley, 1999
- 4. E. CHARNIAK: Statistical language learning, MIT Press, 1996.
- 5. O. DAMERON, *Ontology-based methods for analyzing life science data*. Bioinformatics, Univ. Rennes , 2016
- 6. C.MANNING, H.SCHUTZE, Foundation of statistical natural language processing, MIT, 1999.
- 7. C. MANNING, P. RAGHAVAN, H. SCHUTZE, *Introduction to Information Retrieval*, Cambridge University Press, 2008.
- 8. R. MITKOV ed., *The Oxford Handbook of Computational Linguistics* (Oxford Handbooks in Linguistics), 2005

8.2 Seminar / laboratory	Teaching methods	Remarks
1,2: Knowledge representation in ontologies.	Dialogue, examples	
Examples		

3: Information in text – experiments: retrieval and	Dialogue, examples
ranking examples	
4,5: Applications of theoretical techniques.	Dialogue, case
Experiments.	studies, examples
6,7: Recent research in CL	Discussion, examples

Bibliography

- 1. R. Mitkov (Ed), Oxford Handbook of Computational Linguistics. Oxford University Press, 2003.
- 2. C.D. Manning, P. Raghavan, H. Schütze,. Introduction to Information Retrieval. Cambridge, England: Cambridge University Press, 2008. http://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
- 3. http://www.mt-archive.info/
- 4. http://www.statmt.org/
- 5. web site: https://protege.stanford.edu/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Two fields of CL with immediate applications in real life are IR and MT. IR systems are used on an everyday basis by a wide variety of users. The Internet has proven to be a huge stimulus for MT, with hundreds of millions of pages of text and an increasingly global -- and linguistically diverse public.
- The course respects ACM Curriculla Recommendations for Computer Science studies

10 Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	know the basic principle of the domain;apply the studied concepts	Written exam	30%
10.5 Seminar/lab activities	apply the studied conceptsmake experiments and solve problem	Oral presentation / interaction	20%
		Research report (presentations and experiments)	50 %
			Other activities evaluated as bonus points
10.7 Minimum performance			points
At least grade 5 (from	n a scale of 1 to 10) for the final	computed grade	

➤ At least grade 5 (from a scale of 1 to 10) for the final computed grade

	Date	Signature of course coordinator	Signature of seminar coordinator	
		lecturer PhD Dana Lupsa	lecturer PhD Dana Lupsa	
	Date of approval	Signature of the head of department		