SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Applied Computational Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Empirical Research Methods for Computer Scientists					
(ro)		Metode de cercetare empirică pentru experți în informatică					
2.2 Course coordinator		Assoc. dr. Vescan Andreea					
2.3 Seminar coordinator		Assoc. dr. Vescan Andreea					
2.4. Year of study	1	2.5 Semester	2	2.6. Type of	E	2.7 Type of	Optional
				evaluation		discipline	
2.8 Code of the		MME8187					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1+1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				36	
Additional documentation (in libraries, on electronic platforms, field documentation)				20	
Preparation for seminars/labs, homework, papers, portfolios and essays					42
Tutorship				10	
Evaluations				11	
Other activities:					
A== 11 11 11 1 1 1		440			

3.7 Total individual study hours	119
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	course room with video projector, Internet
5.2. for the seminar /lab	course room with video projector, Internet
activities	

6. Specific competencies acquired

Professional competencies '	C2.4 Using proper criteria and methods for evaluation of software applications C3.2. Identifying and explaining the basic computer models appropriate to the field of application C4.4. Using simulation to study the behavior of realized models and evaluate performance CE1. Evaluating the quality and stability of the obtained solutions and comparing them with the solutions obtained by traditional methods
Transversal competencies	CT1 Application of organized and efficient work rules, of responsible attitudes towards the didactic and scientific domain, for the creative exploitation of their own potential according to the principles and rules of professional ethics CT2 Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups CT3 Use of effective methods and techniques of learning, information, research and development of the capacity to exploit knowledge, to adapt to the requirements of a dynamic society and communication in Romanian language and in a foreign language

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Conduct a systematic literature review; identify gaps in the literature Formulate and motivate research questions Collect & analyse qualitative and quantitative data
7.2 Specific objective of the discipline	 Design empirical studies for different purposes (tool evaluation, phenomenon understanding), choose appropriate methods, advocate your choice Run statistical tests and interpret the results Code qualitative data Draw conclusions from empirical data Present results verbally and in writing

8. Content

8.1 Course	Teaching methods	Remarks
1. Course 1 Introduction- Course objectives & Assessments Intro to philosophy of science	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Research Design: qualitative, quantitative, mixed methods Systematic Literature Review	Interactive exposureExplanationConversation	

	Didentical demonstration
2 D: D	Didactical demonstration Letomactive averagement
3. Doing Research	• Interactive exposure
Finding good research questions	• Explanation
Theory building	ConversationDidactical demonstration
Evidence and Measurements	
4. Experiments	• Interactive exposure
Controlled experiments	• Explanation
Quasi – experiments	ConversationDidactical demonstration
Sampling	
5. Quantitative analysis	• Interactive exposure
Basic Stats	• Explanation
Choosing a statistical model	• Conversation
Statistical Power Analysis	Didactical demonstration
6. Qualitative analysis	Interactive exposure
Grounded theory	• Explanation
Coding strategies	• Conversation
Phenomenography	Didactical demonstration
7. Interviews and Observation	Interactive exposure
Conducting Interviews	• Explanation
Focus Group	• Conversation
Participant Observation	Didactical demonstration
8. Case studies	Interactive exposure
Single and multi-case	• Explanation
Longitudinal Case studies	• Conversation
	Didactical demonstration
9. Survey Research	• Interactive exposure
Designing questionnaires	• Explanation
Sample size	• Conversation
40 1	Didactical demonstration Interactive exposure
10.Intervention methods	• Interactive exposure
Action Research	ExplanationConversation
Pilot Studies	Conversation Didactical demonstration
11 Paplication	Interactive exposure
11.Replication	• Explanation
Importance of replications Bias and influences	• Conversation
Threats to validity	Didactical demonstration
Timeats to variatty	
12.Publishing and reviewing	Interactive exposure
12.F uonsing and reviewing	• Explanation
	• Conversation
	Didactical demonstration
13.Projects by students (1)	Interactive exposure
Workshop	• Explanation
Peer review (anonymous+live)	• Conversation
1 col 10 lie li (unon jinous in le)	Didactical demonstration
14.Projects by students (2)	Interactive exposure
Workshop	Explanation
Reflection/Debriefing	• Conversation
Lessons learned	Didactical demonstration
Dobbons fourned	- Didactical definitionation

Bibliography

Books:

- [1] Forrest ShullJanice SingerDag I. K. Sjøberg, Guide to Advanced Empirical Software Engineering, Springer, 2008
- [2] Seltman, Experimental Design and Analysis, 2018
- [3] Michael Felderer, Guilherme Horta Travassos, Contemporary Empirical Methods in Software Engineering, Springer, 2020
- [4] Cohen, P. (1995). Empirical Methods in Artificial Intelligence. MIT Press.
- [5] James, Witten, Hastie and Tibshirani, An Introduction to Statistical Learning, with Applications in R

Articles

- [1] Fagerholm F, Kuhrmann M, Münch J., Guidelines for using empirical studies in software engineering education, PeerJ Computer Science 3:e131, 2017
- [2] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, Stephen Linkman, Systematic literature reviews in software engineering A systematic literature review, Information and Software Technology, Volume 51, Issue 1, 2009, Pages 7-15, ISSN 0950-5849,
- [3] Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: International conference on software engineering, pp 1–10
- [4] Carver JC (2010) Towards reporting guidelines for experimental replications: a proposal. In: The international workshop on replication in empirical software engineering, pp 2–5
- [5] Carver JC, Juristo N, Baldassarre MT, Vegas S (2014) Replications of software engineering experiments. Empir Softw Eng 19(2):267–276
- [6] Gomez OS, Juristo N, Vegas S (2014) Understanding replication of experiments in software engineering: a 'classification. Inform Softw Technol 56(8):1033–1048.
- [7] Shepperd M, Ajienka N, Counsell S (2018) The role and value of replication in empirical software engineering results. Inf Softw Technol 99:120–132
- [8] Fagerholm F, Becker C, Chatzigeorgiou A, Betz S, Duboc L, Penzenstadler B, Mohanani R, Venters CC (2019) Temporal discounting in software engineering: a replication study. In: 13Th ACM/IEEE international symposium on empirical software engineering and measurement, IEEE, pp 1–12.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Literature review. Theory.	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
2. Research questions	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
3. Comparison of methods	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	
4. Experiments	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises	

5. Quantitative analysis	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises
6. Qualitative analysis (1)	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises
7. Qualitative analysis (2)	Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises

Bibliography

The bibliography for the lectures.

For each seminar, a set of 2-3 papers will be provided in advance to be read and discussed during the seminars.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The course "Applications of Data Science for Software Engineering" at Eindhoven University of Technology
- The course "Empirical Methods" at Carnegie Mellon University
- The course "Empirical Software Engineering: Bridging Research and Practice" at University of Victoria
- The course "Empirical Research Methods for Computer Scientists" at University of Toronto.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.1 Seminar activities	- know the concepts discussed during the lectures and applied during seminars	Assignments	40%
	- class participation and in- class presentations	Class participation	10%
10.2 Course	-be able to implement course concepts - apply techniques for different classes of research investigations	Project -documentation -design -continous observations	50%

10.6 Minimum performance standards

- Seminar/Laboratory assignments work may not be redone in the retake session.
- Project-based exam can be taken during the retake session.
- Students from Previous Years to the current academic year

- All the above rules apply to students from previous years.
- Seminar/Laboratory assignments must be redone during didactic activity time (in the 14 weeks before normal session).
- At least grade 5 (from a scale of 1 to 10) at written exam. The final grade computed with the given formula must be at least 5 in order to pass the exam. At least grade 5 (from a scale of 1 to 10) at project-based exams and laboratory/seminar activity

Date	Signature of course coordinate	ator Signature of seminar coordinator	
28 April 2023	Assoc. Prof. PhD. Andreea Vescan,	Assoc. Prof.	
	Aferon	Aferon	
Date of approval	Signa	ature of the head of department	
		Prof. PhD. Anca Andreica	