SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Inteligenta computationala aplicata

2. Information regarding the discipline

2.1 Name of the discipline Framework Design							
2.2 Course coordinator Lect. dr. loan Lazar							
2.3 Seminar coordinator Lect. dr. Ioan Lazar							
2.4. Year of	2	2.5	2	2.6. Type of	C	2.7 Type of	Mandatory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2	2	3.3	1
		course		seminar/laboratory	
3.4 Total hours in the curriculum	36	Of which: 3.5	24	3.6	12
		course		seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					8
Additional documentation (in libraries, on electronic platforms, field documentation)				7	
Preparation for seminars/labs, homework, papers, portfolios and essays				8	
Tutorship				2	
Evaluations				8	
Other activities:					
0 = m · 1 · 1 · 1 · 1 · 1		2.2			

3.7 Total individual study hours	33
3.8 Total hours per semester	75
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	 Programming Fundamentals
4.2. competencies	• Good programming skills in at least one of the languages Java, C#

5. Conditions (if necessary)

Specific competencies acquired

Prof	C 4.3 Identify models and methods adequate to real life problem solving
essio nal	C 2.1 Identify adequate software systems development methodologies
com pete ncies	C 1.1 Proper description of programming paradigms and language specific mechanisms, and identification of semantical an syntactical differences
Tran svers al com pete ncies	 CT1 Apply organized and efficient work rules and responsible attitude towards didactical and research field, in order to creatively use work potential; respect professional ethical principles CT3 Use efficient methods and techniques for: learning, information search, research and development of capacities to adapt to the requirements of a dynamic society and to communicate in an international language

7. Objectives of the discipline (outcome of the acquired competencies)

	Enhance the students understanding of service oriented concepts through a practical and pragmatic approach
7.1 General objective of the discipline	Provide the students with an environment in which they can explore the usage and usefulness of service oriented concepts in various business scenarios
•	Induce a realistic and industry driven view of software design concepts such as design patterns and their inherent benefits
7.2 Specific objective of the discipline	Give students the ability to explore various object oriented programming languages Improve the students abilities to tackle business requirements Enhance the students understanding of business needs and business value
швегрине	Provide students with insights into the way of working towards achieving high quality software through skilled trainers from the IT industry

8. Content

8.1 Course	Teaching methods	Remarks
1. Web frameworks for Node.js	Exposure:	
	description,	
PBD/Web Platforms	explanation,	
Web programming languages - JavaScript	examples, discussion	
	of case studies	
- callback, generator, async functions		

SE/Software Design	
Web frameworks for node based on	
- callback functions	
- generator functions	
- async functions	
- reactive extensions (rxjs)	
2. Functional reactive programming (FRP)	Exposure:
	description,
- pure functions, higher order functions	explanation,
- recursion	examples, discussion
- map, reduce, filter	of case studies
- functional composition	
3. Web frameworks based on FRP	Exposure:
	description,
3.1 HCI/Programming Interactive Systems	explanation,
	examples, discussion
Functional reactive programming	of case studies
- Cycle.js, https://cycle.js.org/	
4. Web frameworks based on FRP	Exposure:
	description,
4.1 HCI/Programming Interactive Systems	explanation,
	examples, discussion
Functional reactive programming	of case studies
- Recycle.js, https://recycle.js.org/	
5. Component based web frameworks	Exposure:
	description,
Components	explanation,
- properties, lifecycle, state, and events	examples, discussion
- composition vs inheritance	of case studies
- Inferno.js, https://github.com/infernojs/inferno	
Application state	
- flux architecture	
6. Component based web frameworks	Exposure:
	description,
Elements	explanation,
- properties and behaviors	examples, discussion
- composition	of case studies
- Polymer, https://www.polymer-project.org	
Application state	
- elements without UI	
7. Component based web frameworks	Exposure:
	description,

Components and modules	explanation,	
- properties and behaviors	examples, discussion	
- composition	of case studies	
- Angular 2, https://angular.io/		
Application state		
- services		
8. Creating a model-based framework for user	Exposure:	
interfaces	description,	
	explanation,	
IFML metamodel	examples, discussion	
- domain model	of case studies	
- services, actions		
- components, containers		
9. Creating an IFML diagram editor	Exposure:	
	description,	
- components, containers	explanation,	
- navigation flow	examples, discussion	
	of case studies	
10. Creating a domain model diagram editor	Exposure:	
	description,	
- classes, properties, associations	explanation,	
	examples, discussion	
	of case studies	
11. Running and deploying components	Exposure:	
	description,	
- run component within the framework	explanation,	
- generate code and run components as standalone	examples, discussion	
apps	of case studies	
12. Component repository	Exposure:	
	description,	
- publish components	explanation,	
- reuse components	examples, discussion	
	of case studies	
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Creating a secured server for component	Dialogue, debate,	
repositories	case studies,	
	examples, proofs	
2. Creating a web app based on FRP frameworks	Dialogue, debate,	
	case studies,	
	examples, proofs	
3. Creating a web app based on web components	Dialogue, debate,	
	case studies,	
	examples, proofs	
4. Creating a model-based framework for user	Dialogue, debate,	
interfaces	case studies,	
IIICIIaces	case studies,	

	examples, proofs
5. Add diagram editors	Dialogue, debate,
	case studies,
	examples, proofs
6. Add component repository features	Dialogue, debate,
	case studies,
	examples, proofs

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for average programming skills.

10. Evaluation

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4	Course	-	-	
10.5 Seminar/lab	Implement a system with	Project grading	100%	
activities	REST services, server side			
	notifications, and data			
	synchronization			
10.6 Minimum performance standards				

- ☐ A minimum passing grade is defined by attaining at least 50% (5/10) points for the final project and each of the three lab assignments respectively.
- □ No more than 3 absences are allowed for the seminar/lab activities

Date Signature of course coordinator Signature of seminar coordinator

20.09.2 Lect. dr. loan Lazar Lect. dr. loan Lazar

Date of approval Signature of the head of department

Prof. dr. Anca Andreica