SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University of Cluj-Napoca			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study program / Qualification	Advanced Computational Intelligence			

2. Information regarding the discipline

2.1 Name of the discipline				Numerical Modelling in Data Analysis / Modelare Numerică în Analiza Datelor			
2.2 Course coordinator				Prof. Dr. Lehel Csató			
2.3 Seminar coordinator				Prof. Dr. Lehel Csató			
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	
2.8 Code			Ι	MME8172			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					42
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutoring					12
Evaluations					4
Other activities:					-
3.7 Total individual study hours 108					•
3.8 Total hours per semester		150			

3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Algebra and calculus, knowledge of python / MATLAB / Julia languages	
4.2. competencies	Basic mathematicsUsing computers for programming.	

5. Conditions (if necessary)

5.1. for the course	Using of online TEAMS application.
5.2. for the seminar /lab activities	• Students will use – if possible – their own laptop

6. Specific competencies acquired.

lal ies	• Understanding the mathematical concepts used in data modelling.
Professional competencies	• CE1.3 - Using methods from artificial intelligence in solving real-world problems.
Pro	• CE3.4 - Analysis and modelling of data.
	• CT1 The ability to apply intelligent data analysis methods in solving real world problems.
Transversal competencies	• CT3 - The usage of efficient methods and techniques that facilitate the learning, the information, the research, and the development process.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Familiarization with the mathematics and numerical methods that can be
discipline	used in machine learning.
7.2 Specific objective of the	- to highlight the use of the numerical methods in data analysis
discipline	- to familiarize with programming languages that implement these
	methods,
	- to highlight the need for understanding the mathematics behind data
	analysis methods.

8. Content

8.1 Course	Teaching methods	Remarks
Week 1: Administration and organization Introducing the objectives of the course.		
Week 2: Mathematical background: the convolution, the notions related to probabilities. Week 3: Maximum Likelihood and the respective		
geometric interpretations. Illustrations on toy and real data. The MAP method	<u>و</u>	
Week 4: Bayesian parameter estimation	uc	
Week 5: The classification problem and different likelihood functions	active expo Explanation	
Week 6: Approximating the likelihood functions. The first and second order methods. Variational methods.	Interactive exposure • Explanation	
Week 7: Unsupervised methods and the manifold hypothesis.	•	
Week 8: The Principal Component Analysis		
Week 9: Probabilistic Principal Components. Comparisons and applications.		
Week 10: Independent Component Analysis. Applications		

Week 11. Clustering methods and the EM algorithm]			
Week 12. Autoencoders.	1			
Week 13, 14. Presentations related to other advanced	1			
methods in machine learning:				
• SVN				
Gaussian Processes,				
• Ensemble methods				
Bibliography				
[1] Bishop C.M (2006) Pattern Recogniton and Machine Learning, Springer Verlag				
freely available at: https://www.microsoft.co	om/en-us/research/people/cmbish	op/prml-book/		

[2] Deisenroth M.P, Faisal A.A, Soon Ong C (2020) Mathematics for Deep learning, Cambridge University Press freely available at: <u>https://mml-book.github.io/</u> (freely available) accessed 04.01.2022

[3] Li M, Lipton Z.C, Smola A.J, Zhang A (2020): Dive into Deep Learning, Online book, release 0.14.4, freely available at: <u>https://d21.ai/</u> accessed 04.01.2022

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Administration.	Interactive exposure	
presenting the working environment,	Explanation	
setting up the topics for presentation	Conversation	
The 'julia' language for computational modelling		
2. The specifics of using Julia, using the notebook	Interactive exposure	
environment, using comprehensions.	• Explanation	
	Conversation	
3. Tutoring related to the presentation topics	Interactive exposure	
	Explanation	
	Conversation	
4-5. Tutoring and scoring the progress of the presentations	Interactive exposure	
	Explanation	
	Conversation	
6-7. Final presentations	Interactive exposure	
	Explanation	
	Conversation	

Bibliography

[4] Hastie T, Tibshirani R, Friedman R (2009) The Elements of Statistical Learning, Springer Verlag freely available at: <u>https://web.stanford.edu/~hastie/ElemStatLearn/</u>

[5] Haykin S (2009) Neural Networks and Learning Machines, Third Edition, Pearson Education.

[6] Murphy K.M (2012) Machine Learning, a Probabilistic Perspective, The MIT Press.

[7] Sherrington M (2015) Mastering Julia, Pact Publishing.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

The content of the discipline is consistent with the similar disciplines from international universities from abroad – e.g. Stanford, ELTE. It also confirms to the requirements from potential employers asking for intelligent data analysists.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade
10.4 Course	Correctness of the accumulated knowledge.	Written exam (in the regular session)	50%
10.5 Seminar/lab activities	LAB activity	Grade awarded pro rata	10%
	Laboratory exercises	Evaluation of the work that was handed in during the semester	40%

10.6 Minimum performance standards

- The students should be able to use the Julia language, able to code functions that (1) load a dataset, (2) initialize a model, (3) optimize the parameters,
- The students should be able to convert different noise models to error functions, to generate datasets based on a specified error, to analyze the performance and limit of a model.
- Attendance on 90% of the LAB activities is compulsory; the bookkeeping is via TEAMS handed assignments.

Date 04.04.2023

Signature of course coordinator Prof. dr. Lehel CSATÓ Signature of seminar coordinator Prof. dr. Lehel CSATÓ

Date of approval

Signature of the head of department Prof. dr. Anca Andreica

27.04.2023