SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	High Performance Computing and Big Data Analytics
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	-	Operating Systems for Parallel and Distributed Architectures				
2.2 Course coor	2.2 Course coordinator Assoc. prof. Darius Bufnea						
2.3 Seminar coordinator As				Assoc. prof. Darius Bufnea			
2.4. Year of	1	2.5	1	2.6. Type of E 2.7 Type of compulsory			
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					25
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					12
Evaluations					7
Other activities:				-	
0.5.5. 1.1. 1.1. 1.1.1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Operating Systems
	Distributed Operating Systems
	Computer Networks
4.2. competencies	Average administration and programming skills

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar/lab	Computers, Linux computers and Linux virtual machines for building
activities	a cluster, Network infrastructure

6. Specific competencies acquired

o. Speen	ic competencies acquired
	 Capability of analysis and synthesis;
ies	 Understanding and working with basic concepts of data analysis and modelling;
enc	 Modelling and solving real-life problems;
ıbet	Assimilation of mathematical concepts and formal models to understand the methods and
com	components of high performance systems;
lal c	Capability of developing of high performance programs based on parallel and distributed
ion	programming;
Professional competencies	 Analysis, design, and implementation of data analysis systems;
Pro	• Understanding and acquisition of methods of modelling, optimization, analysis of massive
	datasets, data visualization.
	Ethic and fair behaviour, commitment to professional deontology
al :ies	Teamwork capabilities; able to fulfil different roles
ers	• Professional communication skills; concise and precise description, both oral and written,
nsv	of professional results, negotiation abilities;
Transversal competencies	• Entrepreneurial skills; working with economical knowledge; continuous learning

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Know the key concepts of parallel cluster architectures
7.2 Specific objective of the discipline	At the end of the course, students will know how to
	 build deploy configure maintain monitor debug
	a Linux parallel cluster

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Operating systems for parallel	Exposure,	
architectures	description,	
	explanation, debate	
	and dialogue,	
	discussion of case	

	studies
2. Parallel Cluster architecture: Cluster Head Nodes, Computer Nodes, Clustering Middleware	Exposure, description, explanation, case studies
3-4. Parallel Cluster Paradigms: Single system image, Centralized system management, High processing capacity, Resource consolidation, Optimal use of resources, High- availability, Redundancy, Single points of failure, Failover protection and Disaster recovery, Horizontal and vertical scalability, Load-balancing, Elasticity, Run Jobs Anytime, Anywhere	Exposure, description, explanation, debate and dialogue, discussion of case studies
5. Design and configuration. Network prerequisites for a parallel cluster: LAN, bandwidth, latency, interface, security aspects. Nodes automatic configuration and deployment	Exposure, description, explanation, case studies
6. Virtualization of hardware, operating system, storage devices, computer network resources	Exposure, description, explanation, case studies
7-8. Beowulf clusters deployment and administrations	Exposure, description, explanation, debate and dialogue, discussion of case studies
9. Linux Cluster Distributions: Mosix, ClusterKnoppix. Automated operating systems and software provisioning for a Linux Cluster: Open Source Cluster Application Resources (OSCAR)	Exposure, description, explanation, case studies
10. Cluster resources: distributed memory architecture and distributed shared memory, distributed file systems (examples: IBM General Parallel File System, Microsoft's Cluster Shared Volumes, Oracle Cluster File System	Exposure, description, explanation, debate and dialogue, discussion of case studies
11. Nodes and head node management, Cluster system management, Debugging and monitoring a parallel cluster, Node failure management	Exposure, description, explanation, case studies
12. Data sharing and communication, Message passing and communication, Parallel processing libraries: Parallel Virtual Machine toolkit and the Message Passing Interface library	Exposure, description, explanation, case studies
13. Software and development environment, Parallel application development and execution (Parallel Environment – PE), Job scheduling & management	Exposure, description, explanation, case studies

14. Final review	Exposure,	
	description,	
	explanation, case	
	studies	

Bibliography

- 1. Gregory Pfister: *In Search of Clusters*, Prentice Hall; 2 edition (December 22, 1997), ISBN-10: 0138997098, ISBN-13: 978-0138997090
- 2. George F. Coulouris, Jean Dollimore, Tim Kindberg: *Distributed Systems: Concepts and Design*, Addison-Wesley; 5 edition (May 7, 2011), ISBN-10: 0132143011, ISBN-13: 978-0132143011
- 3. Joseph D. Sloan: *High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI*, O'Reilly Media (November 23, 2004), ISBN-10: 0596005709, ISBN-13: 978-0596005702
- 4. Daniel F. Savarese, Donald J. Becker, John Salmon, Thomas Sterling: *How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters*, The MIT Press (May 28, 1999), ISBN-10: 026269218X, ISBN-13: 978-0262692182
- 5. Gordon Bell, Thomas Sterling: *Beowulf Cluster Computing with Linux*, The MIT Press; 1 edition (October 1, 2001), ISBN-10: 0262692740, ISBN-13: 978-0262692748
- 6. Charles Bookman: *Linux Clustering: Building and Maintaining Linux Clusters*, Sams Publishing; 1 edition (June 29, 2002), ISBN-10: 1578702747, ISBN-13: 978-1578702749

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Project presentation	Conversation, debate,	The Seminar/lab is
	case studies	organized as a total of 7
		classes - 2 hours every
		other week
2. Cluster requirements	Conversation, debate,	
	case studies	
3. Cluster building and deployment	Conversation, debate,	
	case studies	
4. Cluster configuration	Conversation, debate,	
	case studies	
5. Cluster maintenance	Conversation, debate,	
	case studies	
6. Cluster debugging and monitoring	Conversation, debate,	
	case studies	
7. Final evaluation of seminar/lab activities	Conversation, debate	
D'1.1' 1		

Bibliography

Students, organized in teams of 4 or 5 members will have to build, deploy, configure, maintain, monitor and debug a Linux parallel cluster. The key concepts to accomplish these goals are presented during the course hours and are also available in the course' bibliography (see above).

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations, and representative employers within the field of the program

• Courses with similar content are taught for graduate students in major universities around the world,

- including: Princeton, Berkeley, MIT.
- Course content is considered very important in the actual context of the increased need of computing power for computational science, interdisciplinary applications, and commercial applications as well, coupled with the high cost and low accessibility of traditional supercomputers.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	- know the key concepts of	Written exam	30%	
	parallel cluster			
	architectures;			
10.5 Seminar/lab activities	- know how to deploy,	Presentation on a HPC	30%	
	maintain, debug and	related topic		
	monitor a parallel cluster	Homework assignments	30%	
		Default	10%	
10.6 Minimum performance standards				
At least grade 5 (from a scale of 1 to 10) at written exam and seminar/lab activities.				

Date	Signature of course coordina	tor Signature of seminar coordinator
	Assoc. prof. Darius Bufnea	Assoc. prof. Darius Bufnea
Date of approval		Signature of the head of department