SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Departament of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Data Science for Industry and Society

2. Information regarding the discipline

2.1 Name of the discip	oline (en)	Intelligent Algorithms in Bioinformatics				
(ro)	Algoritmi inteligenti in Bioinformatica					
2.2 Course coordinator		Assoc. Prof. Dr. Bocicor Maria Iuliana				
2.3 Seminar coordinat	or	A	ssoc. Prof. Dr. B	ocicor M	aria Iuliana	
2.4. Year of study 2	2.5 Semester		2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory
2.8 Code of the discipline	MME8189			I		i

3. Total estimated time (hours/semester of didactic activities)

et i otal estimatea time (notifs, semest						
3.1 Hours per week	3	Of which:	3.2 course	2	3.3	1
					seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which:	3.5 course	28	3.6	14
					seminar/laboratory	
Time allotment:					hours	
Learning using manual, course support, bibliography, course notes					43	
Additional documentation (in libraries, on electronic platforms, field documentation)					40	
Preparation for seminars/labs, homework, papers, portfolios and essays					43	
Tutorship					4	
Evaluations					3	
Other activities:				_		
3.7 Total individual study hours		133				

3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

4.1. curriculum	•	Algorithms, data structures
4.2. competencies	•	Average software development skills in Python, general knowledge about machine learning

5. Conditions (if necessary)

5.1. for the course	Projector
5.2. for the seminar /lab activities	• Laboratory with computers /laptop; internet access.

6. Specific competencies acquired

	CE1.3 Use of Machine Learning methods, techniques and algorithms to model solutions to classes of problems
Professional competencies	CE1.4 Identification and explanation of Machine Learning techniques and algorithms and their use for solving specific problems CE1.5 Using models and solutions from Machine Learning in dedicated applications
	CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional athies
Transversal competencies	and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• To introduce various concepts, as well as complex problems in Bioinformatics and illustrate a series of approaches for these problems using Machine Learning models.
7.2 Specific objective of the discipline	 Identification of real, relevant problems in the context of Bioinformatics. Modelling the problems from a Machine Learning perspective. Proposal of theoretical and practical Machine Learning based solutions for complex problems in Bioinformatics. Application and evaluation of the proposed solutions using real biological or medical data.

8. Content

8.1 Course	Teaching methods	Remarks
 Introduction in Bioinformatics. Basic concepts in molecular biology. Genomics, proteomics, networks and systems biology, evolution. Encoding of biological data. DNA and protein databases. Public Bioinformatics tools. Machine learning. Classification. Clustering. Optimisation. Gene finding, gene function prediction. Protein-protein interactions. Disease diagnosis based on biological data. Text mining in Bioinformatics. Protein folding. Sequence alignment. Clustering in Bioinformatics. Presentation of research papers. Presentation of research papers. 	 Interactive exposure Explanation Conversation Examples Didactical demonstration 	
Bibliography		

- 1. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
- Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., ... & Robles, V. (2006). Machine learning in bioinformatics. Briefings in bioinformatics, 7(1), 86-112.
- 3. A.E. Hassanien, M.G. Milanova, Smolinski T.G., and Abraham A. Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives, and Challenges. Computational Intelligence in Biomedicine and Bioinformatics Studies in Computational Intelligence, 151:3-47, 2008.
- 4. N.M. Luscombe, D. Greenbaum, and M. Gerstein. What is bioinformatics? An introduction and overview. Yearbook of Medical Informatics, pages 83-100, 2001.

overview. Tearbook of Wiedlear Informatics, pag	$c_{5} c_{5} c_{5} c_{5} c_{100}, 2001.$	
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Study and discussion regarding the topic for the	Explanation	The laboratory is
research paper and software application.	Conversation	structured as 2 hour
2. Selection of topic for the research paper and		classes every two
software application.		weeks.
3. Problem statement and relevance in Bioinformatics.		
4. Methodology and Machine Learning approach for		
the chosen problem – iteration 1.		
5. Methodology and Machine Learning approach for		
the chosen problem – iteration 2.		
6. Experimental evaluation of the approach using		
public/acquired data sets.		
7. Presentation of the final software application.		
Dibliggraphy		

Bibliography

- 1. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
- 2. Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., ... & Robles, V. (2006). Machine learning in bioinformatics. Briefings in bioinformatics, 7(1), 86-112.
- 3. A.E. Hassanien, M.G. Milanova, Smolinski T.G., and Abraham A. Computational Intelligence in Solving Bioinformatics Problems: Reviews, Perspectives, and Challenges. Computational Intelligence in Biomedicine and Bioinformatics Studies in Computational Intelligence, 151:3-47, 2008.
- 4. N.M. Luscombe, D. Greenbaum, and M. Gerstein. What is bioinformatics? An introduction and overview. Yearbook of Medical Informatics, pages 83-100, 2001.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The course exists in the studying program of major universities abroad;

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)
10.4 Course	• Writing and	Presentation of the paper	50%
	presentation of a	(questions and discussions)	
	paper. The topic must		
	be a Bioinformatics		
	problem approached		
	via Machine Learning		
	techniques.		
	• The paper must be		
	similar to a research		
	article, in topic and		

10. Evaluation

	structure (approximately 10 pages).					
10.5 Seminar/lab activities	 Development of a software application related to the research paper. Correctness and punctuality of delivered laboratory assignments. 	Testing of the application.	40%			
	• Lecture and laboratory activity.	Continuous observation of the student during lectures and laboratories.	10%			
10.6Minimum performance standards						

- Each student has to prove that they acquired an acceptable level of knowledge and understanding of the core concepts taught in the class, that they are capable of using knowledge in a coherent form, that they have the ability to establish certain connections and to use the knowledge in solving different Bioinformatics problems.
- Successfully passing of the examination is conditioned by a minimum grade of 5 for each of the following: lecture paper, laboratory software application.

Date	Signature of course coordinator	Signature of seminar coordinator
06.07.2023	Assoc. Prof. PhD. Maria Iuliana Bocicor	Assoc. Prof. PhD. Maria Iuliana Bocicor

Date of approval

Signature of the head of department

.....

Prof. PhD. Laura Diosan