SYLLABUS

i ino indiana i can and ino pi can and				
1.1 Higher education	Babeş Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Master			
1.6 Study programme /	Data Science for Industry and Society			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discip	line (en)	D	ata Visualization				
(ro)							
2.2 Course coordinator			Prof. Dr. Camelia Chira				
2.3 Seminar coordinator		Prof. Dr. Camelia Chira					
2.4. Year of study 2	2.5 Semester	3	2.6. Type of evaluation	Ε	2.7 Type of discipline	Compulsory	
2.8 Code of the discipline	MME8186						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab + 1
				seminar/laboratory	project
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					40
Additional documentation (in libraries, on electronic platforms, field documentation)					40
Preparation for seminars/labs, homework, papers, portfolios and essays					52
Tutorship					4
Evaluations					8
Other activities:					-
3.7 Total individual study hours		144			<u></u>
3.8 Total hours per semester		200			

3.8 Total hours per semester	200
3.9 Number of ECTS credits	8

4. Prerequisites (if necessary)

4.1. curriculum	٠	Algorithms, data structures, statistics	
4.2. competencies	•	Average programming skills	

5. Conditions (if necessary)

5.1. for the course	•	Projector
5.2. for the seminar /lab	•	Computers, specific development environment
activities		

6. Specif	ic competencies acquired
Professional competencies	 C3.3 Use of models and instruments from computer science and mathematica for solving problems specific to the application domain C3.4 Analysis of data and models C4.4 Use of simulation to study the behaviour of created models and performance evaluation
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT2. Efficient conduct of activities organized in an interdisciplinary group and development of empathic capacity of interpersonal communication, networking and collaboration with diverse groups CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Learn data visualization concepts and tools to facilitate understanding and/or interpretion data
7.2 Specific objective of the discipline	 Study data visualization techniques and learn the concepts and methods used in the field of data modelling and visualization. Use visualization to learn and explore the data, solve problems and study real phenomena.

8. Content

8.1 Course	Teaching methods	Remarks	
1. Introduction to Data Visualization	Interactive exposure		
2. Understanding data, representation,	Presentation		
variability	Explanation		
3. Visualization techniques, basic plotting	Practical examples		
with matplotlib	Case-study discussions		
4. Basic visualization tools: bar charts, area			
plots, histograms			
5. Specialized visualization tools: pie charts,			
box plots, scatter plots, bubble plots			
6. Data exploration for categorical data, time			
series data			
7. Data visualization using seaborn, statistical			
graphics, regression plots, word clouds,			
waffle charts			
8. Visualizing geospatial data, introduction to			
folium and map styles			
9. Network data visualization, introduction to			
NetworkX			
10. Plotly and dashboard creation			
11-12. SAS Visual Analytics			
13-14. Applied research presentations			
Bibliography			
1. Few, S., Data Visualization: Past, Present, a	and Future, 2007,		

http://www.perceptualedge.com/articles/Whitepapers/Data_Visualization.pdf.

- 2. Few, S., Show me the numbers: Designing tables and graphs to enlighten. Burlingame, CA: Analytics Press, 2012.
- 3. T. Munzner, Visualization Analysis and Design (VAD), CRC press, 2014. (http://www.cs.ubc.ca/~tmm/vadbook/)
- 4. Sosulski, K., Data Visualization Made Simple: Insights into Becoming Visual. New York: Routledge, 2019.
- 5. Spence, R., Information Visualization, Addison Wesley, 2001.
- 6. Yau, N., Data Points: Visualization that means something. Indianapolis: O'Reilly, 2013.
- 7. SAS white paper, https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/data-visualization-techniques-106006.pdf

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Setup Python working environment and	• Interactive exposure	
libraries used (matplotlib, seaborn, folium,	• Explanation	
networkx)	Conversation	
2. Basic visualization techniques	Didactical demonstration	
3. Specialized visualization techniques		
4. Preparation of individual projects: what is		
the data, what are the tasks and objectives.		
5. Project progress and feedback		
6. Project progress and feedback		
7. Project demonstration and presentations		
Bibliography		

1. Few, S., Show me the numbers: Designing tables and graphs to enlighten. Burlingame, CA:

Analytics Press, 2012.

- 2. T. Munzner, Visualization Analysis and Design (VAD), CRC press, 2014. (http://www.cs.ubc.ca/~tmm/vadbook/)
- 3. Sosulski, K., Data Visualization Made Simple: Insights into Becoming Visual. New York: Routledge, 2019.
- 4. Yau, N., Data Points: Visualization that means something. Indianapolis: O'Reilly, 2013.
- 5. Hubspot, An Introduction to Data Visualization, https://offers.hubspot.com/data-visualization-guide?_ga=2.184014562.553434431.1574535637-863373805.1574535637.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Know concepts and	Written exam	10%			
	methods from the domain	Research report and	40%			
	of data visualization	presentation				
10.5 Seminar/lab activities	Apply data visualization	Project implementation and	50%			
	techniques in real	presentation				
	problems					
10.6 Minimum performance standards						

Each student should obtain minimum 5 for the research report and for the final grade. To obtain the minimum grade 5, the student must demonstrate the mastery of the basic concepts, visualization techniques and methods used in the domain of data visualization.

Date

Signature of course coordinator Sign

Signature of seminar coordinator

Prof. dr. Camelia Chira

Prof. dr. Camelia Chira

Date of approval

Signature of the head of department

.....

Prof. dr. Laura Dioşan