SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj
institution	
1.2 Faculty	Mathematics and Computer Science
1.3 Department	Mathematics and Computer Science in Hungarian
1.4 Field of study	Computer Science
1.5 Study cycle	master
1.6 Study programme /	Databases
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Database Systems Implementation							
2.2 Course coordinator				Viorica Varga PhD)		
2.3 Seminar coordinator				Viorica Varga PhD)		
2.4. Year of	1	2.5	1	2.6. Type of exam 2.7 Type of required			
study	rudy Semester evaluation discipline						
2.8 Code of the discipline MME8037							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1 S
				seminar/laboratory	1 P
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				28	
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					50
Tutorship					
Evaluations				2	
Other activities:					
3.7 Total individual study hours		94			•
3.8 Total hours per semester		150			

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	• non
4.2. competencies	• developing applications on relational DBMSs (SQL, relational algebra - completed an introductory course on Databases)
	• sorting/searching techniques (quick/merge sorts, binary trees, hash tables - course on Design and Analysis of Algorithms)

6

5. Conditions (if necessary)

5.1. for the course	Video projector
5.2. for the seminar /lab	Visual Studio or Java or Phyton
activities	

6. Specific competencies acquired

Professional competencies	 have a good insight into how DBMSs function internally understand how to analyse the performance of data-intensive systems be familiar with a variety of programming techniques for large-scale data manipulation apply the insights achieved to build the major components of a mini-DBMS.
Transversal competencies	• this course gives the basics for query optimization

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 The course objective is the presentation of data storage in databases, buffer management, index techniques, query processing and the overview of query optimization in relational databases. The students will be able to understand query processing in relational databases Implementation of a simple Database Management System (DBMS).
7.2 Specific objective of the discipline	 Secondary-storage devices; disk access time; Input/Output model of computation; optimized disk access; File and System Structure: page layout and access; buffer management; file organizations (heap, sorted, clustered); row stores versus column stores; Indexes: Tree-structured (ISAM, B+tree); hash-based (static, extendible, linear); multi-dimensional (UB-tree, k-d-b tree, R-tree) External Sorting: external n-way merge sort; sorting based on B+trees; Query Evaluation: Selection (index-based, hash-based, arbitrary selection predicates); projection (duplicate elimination; hash-based, sorting-based); joins (nested-loops, index nested, block nested, sortmerge, hash joins); set operations; aggregation; impact of buffering, pipelining, blocking; evaluation techniques in existing systems;

8. Content

8.1	Course	Teaching methods	Remarks
1.	The structure of the physical database. The	Presentation	
	structure of the magnetic disc. Optimization of		
	Disk-Block Access. RAID (redundant arrays of		
	independent disks)		
2.	Buffer-replacement policies	Presentation	
3.	File organization: fixed-length records, variable-	Presentation	

length records, sequential file, heap file, sorted	
file, multitable clustering file organization. Data	
dictionary storage	
4. Ordered indices, dense and sparse indices and	Presentation
multilevel indices. Index Sequential Access	
Mechanism. Index update. Primary (clustering)	
and secondary (unclustering) indices.	
5. B+-tree index files. Structure of a B+-tree.	Presentation
Queries on B+-trees. Algorithm for update.	
6. Algorithm for delete in B+-tree. B+-tree file	Presentation
organization.	
7. B-tree index files. Static hashing, hash indices.	Presentation
Dynamic hashing: extendable hashing, algorithms	
for update and delete in hash files. Comparison of	
ordered indexing and hashing.	
8. Multiple-key access: using multiple single-key	Presentation
indices, indices on multiple keys, bitmaps	
indices.	
9. Overview of query processing. Measures of query	Presentation
cost. Basic algorithm for selection	resentation
implementation. (linear search, binary search,	
using indices, selections involving comparison)	Presentation
10. Algorithms for external sorting.	
11. Algorithms for projection, set operations, outer	Presentation
join and aggregation implementation.	
12. Algorithms for join implementation (nested-loop	Presentation
join, block nested-loop join, indexed nested-loop	
join, merge join, hash join, cost of algorithms).	
13. hash join, cost of algorithms Implementation of	Presentation
pipelining.	
14. Overview of query optimization. Transformation	Presentation
of relational expressions, equivalence rules. Join	
ordering. Enumeration of equivalent expressions.	
Estimating statistics of expression results:	
selection size estimation, join size estimation,	
size estimation for other operations. Materialized	
view, it's maintenance and using it in query	
optimization.	
Bibliography	
[MUW00] H. Garcia-Molina, J. D. Ullman, J. Widom: Data	thas Systems The Complete Pook Proprise Hell Unerer
Saddle River, New Jersey, 2008.	iouse systems - The Complete Book, Frencice Hall Opper
[R02] R. Ramakrishnan: Database Management System	as WCB McGraw-Hill Boston 2002

[R02] R. Ramakrishnan: Database Management Systems, WCB McGraw-Hill, Boston, 2002.

https://pages.cs.wisc.edu/~dbbook/

[SKS06]A. Silberschatz, H. Korth, S. Sudarshan: *Database System Concepts*, McGraw-Hill, New York, 2006.

[V06] V. Varga, Interogarea bazelor de date distribuite, Casa Cărții de Știință, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Implementation of a complete single-user		
relational database management system. It		
involves a significant amount of coding. The		
project is highly structured, but there is enough		
slack in the specification so that creativity is both		
allowed and required.It is recommended to		

implement a server component and a client one.	
The client can be implemented as Windows	
interface, Web client or a command line parser.	
2. The Record Management (RM) Component:	
implement a set of functions for managing	
unordered files of database records. (There is	
recommended to use binary files to implement	
unordered files). You can consider fix length	
records; the management of variable length	
records is optional. One idea to implement the	
delete operation of a record is the logical delete. It	
means to store for every record in one bit, which	
store: the record is deleted or not. In order to not	
read the whole file to find deleted records and	
overwrite them with new ones, you can link the	
deleted records in a stack or queue. The top of the	
deleted records stack can be stored in the first	
record of the file. You have to store the system	
catalog. It will contain table names, index file	
names. For every table the file name, where the	
table is stored, the structure of the table, the	
constraints, the associated index files. For every	
index file, the search key, the type of it. You can	
implement the catalog in XML file. In Catalog.xml	
you can find an example.	
3. <i>The Indexing (IX) Component:</i> implement a	
facility for building indexes on records stored in	
unordered files. The indexing facility will be	
based on B+ trees or dynamic hashing.	
4. The Indexing (IX) Component: implement a	
facility for building indexes on records stored in	
unordered files. The indexing facility will be	
based on B+ trees or dynamic hashing.	
5. The System Management (SM) Component: This	
part will implement various database and system	
utilities, including data definition commands (at	
least integer and character data type), including	
primary key and foreign key constraint (primary	
key have to be implemented for one or more	
columns, but foreign key is optional to implement	
for more than one column), index definition	
commands and catalog management. For primary	
key you will create index file automatic. The	
System Management component will rely on the	
Record Management and Indexing components	
from Parts 1 and 2. It also will use a command-line	
parser or a graphical user interface.	
6. The Query Language (QL) Component: In this part	
students will implement a query language, which	
consists of user-level data manipulation	
commands, both queries and updates (SQL Select,	
Insert, Update, Delete can be used). The Query	
Language component will use a command-line	
Language component will use a command-line parser or a graphical user interface. The queries have to be processed, using algorithms presented	

at the course. Features you have to implement in Select statement: selection, projection, join of tables, aggregation, cumulative functions, (subquery, order by is optional for extra points).
7. Create a database with 3 tables with the project.
Update the data and run queries.
Bibliography
https://cs186.gitbook.io/project/
https://courses.cs.washington.edu/courses/cse444/22wi/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

•	This course is in concordance with the program of similar courses in other universities:
	http://www.cs.ox.ac.uk/teaching/courses/databasesystemsimplementation/

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the	
			grade (%)	
10.4 Course	exam	written test	40	
10.5 Seminar/lab	mini DBMS project	Test by instructor with	60	
activities		different inputs		
10.6 Minimum performance standards				
First 4 labs have to be presented from the mini DBMS project				
> 50 points to accumulate				

Date

Signature of course coordinator

assoc. prof. Viorica Varga

Signature of seminar coordinator

..28 April 2023....

assoc. prof. Viorica Varga

.....

.....

Date of approval

Signature of the head of department

..... 30 April 2023.....

.....