SYLLABUS ## 1. Information regarding the programme | 1.1 Higher education | Babeş-Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computers and Information Technology | | 1.5 Study cycle | Bachelor | | 1.6 Study programme / | Information Engineering | | Qualification | | # 2. Information regarding the discipline | 2.1 Name of the discipline (en) | | History of Information Engineering | | | | | | |---------------------------------|---|------------------------------------|----|--------------------------|---|------------------------|--------------------| | (ro) | | Istoria Informaticii | | | | | | | 2.2 Course coordinator | | | Co | Conf. PhD. Adrian Sterca | | | | | 2.3 Seminar coordinator | | | | | | | | | 2.4. Year of study | 4 | 2.5 Semester | 8 | 2.6. Type of evaluation | E | 2.7 Type of discipline | Optiona
l
DC | | 2.8 Code of the discipline | | MLE7034 | | | | | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 3 | Of which: 3.2 course | 3 | 3.3 | | |---|---|----------------------|----|--------------------|-------| | | | | | seminar/laboratory | | | 3.4 Total hours in the curriculum | 4 | Of which: 3.5 course | 42 | 3.6 | | | | 2 | | | seminar/laboratory | | | Time allotment: | | | | | hours | | Learning using manual, course support, bibliography, course notes | | | | | | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 0 | | Tutorship | | | | | 7 | | Evaluations | | | | | 4 | | Other activities: | | | | | 0 | | 0.5 m - 11 11 11 1 1 1 1 | | 22 | | | | | 3.7 Total individual study hours | 33 | |----------------------------------|----| | 3.8 Total hours per semester | 75 | | 3.9 Number of ECTS credits | 3 | # **4. Prerequisites** (if necessary) | 4.1. curriculum | • | |-------------------|---| | 4.2. competencies | • | ## **5. Conditions** (if necessary) | 5.1. for the course | Class room with a video projector device | |---------------------------|--| | 5.2. for the seminar /lab | • | | activities | | 6. Specific competencies acquired | o. Specia | ie competencies acquireu | |-----------|--| | Prof | C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance | | essio | optimization | | nal | | | com | | | pete | | | ncies | | | | | | Tran | CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional | | svers | reputation | | al | CT2 Identifying, describing and conducting processes in the project management field, | | com | undertaking different team roles and clearly and concisely describing own profesional results, | | noto | verbally or in writing. | | pete | CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and | | ncies | organizational culture knowledge | | | 1-8 | **7. Objectives of the discipline** (outcome of the acquired competencies) | TO Sectives of the disciplina | to (outcome of the acquired competences) | |--|---| | 7.1 General objective of the discipline | To obtain a global view of Computer Science and to understand and know its evolution. | | 7.2 Specific objective of the discipline | To get students accustomed with historical evolution of the main
Computing Systems and Operating Systems types existent in today
Computer Science and in perspective. To discover the most important people in Computer Science. | ### 8. Content | 8.1 Course | Teaching methods | Remarks | |--|-----------------------|---------| | 1. Algorithmics in ancient times and Middle Age; | Exposure:description, | | | Euclid's algorithm. First Computing Systems | explanation, examples | | | and first programming elements: Blaise Pascal, | | | | Charles Babage and Ada Byron, forerunners of | | | | classical Computer Science. | | | | 2. Mathematical models in Computer Science: | Exposure:description, | | | the | explanation, examples | | | Turing machine, normal algorithms and formal | | | | languages. The emergence of the electronic | | | | computer(1943-45); John von Neumann's and | | | | Alan Turing's contributions. | | | | 3. Crucial moments in hardware development: | Exposure:description, | | | the | explanation, examples | | | input-output channel, the transistor, integrated circuits (microchip), the microprocessor, multiprocessor systems, real time systems, microcomputers and supercomputers. | | |--|--| | Generations of computers. 4. Operating systems, from resident monitors to distributed operating systems; from the monolithic internal structure to stratified structures and microkernel. | Exposure:description, explanation,examples | | 5. Short history of programming languages. | Exposure:description, explanation,examples | | 6. History of computer communication and the Internet. | Exposure:description, explanation,examples | | 7. History of the open source movement vs. closed source | Exposure:description, explanation,examples | | 8. History of the WWW | Exposure:description, explanation,examples | | 9. History of mobile devices | Exposure:description, explanation,examples | | 10. Important figures in Computer Science | Exposure:description, explanation,examples | | 11-12. History of Computer Science in Romania | Exposure:description, explanation,examples | | 13-14. Old computer exhibition | Exposure:description, explanation,examples | #### **Bibliography** - 1. http://www.cs.ubbcluj.ro/~forest/hcs - 2. Wikipedia - 3. http://cs-exhibitions.uni-klu.ac.at/index.php?id=320 - 4. http://cs-exhibitions.uni-klu.ac.at/index.php?id=321 - 5. http://cs-exhibitions.uni-klu.ac.at/index.php?id=323 - 6. History of Unix. http://perso.club-internet.fr/unix/history.html - 7. http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html - 8. http://www.computerhistory.org/ # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies; - The course gives a global view on many fields in Computer Science so it provides the student a more general expertise in Computer Science; #### 10. Evaluation | Type of activity | 10.1 Evaluation | 10.2 Evaluation methods | 10.3 | |------------------|-----------------|-------------------------|-----------| | | criteria | | Share in | | | | | the grade | | | | | (%) | | 10.4 Course | Knowing the | The final grade is: Min(E+P+B, 10) | 100% | | | | |------------------|------------------------------------|--|------|--|--|--| | | milestones in | where: | | | | | | | the evolution of | • E = the score obtained at the final quiz exam; | | | | | | | Computer | the maximum score that can be obtained at the | | | | | | | Science. | quiz exam is 7 | | | | | | | | • P = course activity, i.e. the number of course | | | | | | | | attendances; P can be maximum 6 | | | | | | | | • $B = 1$ bonus point obtained to the test given | | | | | | | | during the semester at the course (of course if | | | | | | | | the student answers correctly) | | | | | | | | | | | | | | | | If the student is not present at the final quiz exam or | | | | | | | | the test or he/she does not have any course attendances, | | | | | | | | his/her corresponding scores, E, B or P will be 0. The | | | | | | | | student must get a score larger than 3 to the final quiz | | | | | | | | exam and a final grade of at least 5 in order to pass. | | | | | | 10.5 Seminar/lab | | | | | | | | activities | | | | | | | | 10.6 Minimum per | 10.6 Minimum performance standards | | | | | | | ☐ In order to | successfully pass this | s class, students must get at least 5. | | | | | Date Signature of course coordinator Signature of seminar coordinator 23.05.2022 Conf.PhD. Adrian Sterca Conf.PhD. Adrian Sterca Date of approval Signature of the head of department Prof. PhD. Laura Dioșan 24.05.2022