SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		History of Information Engineering					
(ro)		Istoria Informaticii					
2.2 Course coordinator			Co	Conf. PhD. Adrian Sterca			
2.3 Seminar coordinator							
2.4. Year of study	4	2.5 Semester	8	2.6. Type of evaluation	E	2.7 Type of discipline	Optiona l DC
2.8 Code of the discipline		MLE7034					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	3	3.3	
				seminar/laboratory	
3.4 Total hours in the curriculum	4	Of which: 3.5 course	42	3.6	
	2			seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					0
Tutorship					7
Evaluations					4
Other activities:					0
0.5 m - 11 11 11 1 1 1 1		22			

3.7 Total individual study hours	33
3.8 Total hours per semester	75
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

o. Specia	ie competencies acquireu
Prof	C3.4 Comparatively and experimentaly evaluation of the alternative solutions for performance
essio	optimization
nal	
com	
pete	
ncies	
Tran	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional
svers	reputation
al	CT2 Identifying, describing and conducting processes in the project management field,
com	undertaking different team roles and clearly and concisely describing own profesional results,
noto	verbally or in writing.
pete	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and
ncies	organizational culture knowledge
	1-8

7. Objectives of the discipline (outcome of the acquired competencies)

TO Sectives of the disciplina	to (outcome of the acquired competences)
7.1 General objective of the discipline	To obtain a global view of Computer Science and to understand and know its evolution.
7.2 Specific objective of the discipline	 To get students accustomed with historical evolution of the main Computing Systems and Operating Systems types existent in today Computer Science and in perspective. To discover the most important people in Computer Science.

8. Content

8.1 Course	Teaching methods	Remarks
1. Algorithmics in ancient times and Middle Age;	Exposure:description,	
Euclid's algorithm. First Computing Systems	explanation, examples	
and first programming elements: Blaise Pascal,		
Charles Babage and Ada Byron, forerunners of		
classical Computer Science.		
2. Mathematical models in Computer Science:	Exposure:description,	
the	explanation, examples	
Turing machine, normal algorithms and formal		
languages. The emergence of the electronic		
computer(1943-45); John von Neumann's and		
Alan Turing's contributions.		
3. Crucial moments in hardware development:	Exposure:description,	
the	explanation, examples	

input-output channel, the transistor, integrated circuits (microchip), the microprocessor, multiprocessor systems, real time systems, microcomputers and supercomputers.	
Generations of computers. 4. Operating systems, from resident monitors to distributed operating systems; from the monolithic internal structure to stratified structures and microkernel.	Exposure:description, explanation,examples
5. Short history of programming languages.	Exposure:description, explanation,examples
6. History of computer communication and the Internet.	Exposure:description, explanation,examples
7. History of the open source movement vs. closed source	Exposure:description, explanation,examples
8. History of the WWW	Exposure:description, explanation,examples
9. History of mobile devices	Exposure:description, explanation,examples
10. Important figures in Computer Science	Exposure:description, explanation,examples
11-12. History of Computer Science in Romania	Exposure:description, explanation,examples
13-14. Old computer exhibition	Exposure:description, explanation,examples

Bibliography

- 1. http://www.cs.ubbcluj.ro/~forest/hcs
- 2. Wikipedia
- 3. http://cs-exhibitions.uni-klu.ac.at/index.php?id=320
- 4. http://cs-exhibitions.uni-klu.ac.at/index.php?id=321
- 5. http://cs-exhibitions.uni-klu.ac.at/index.php?id=323
- 6. History of Unix. http://perso.club-internet.fr/unix/history.html
- 7. http://www.cs.uwaterloo.ca/~shallit/Courses/134/history.html
- 8. http://www.computerhistory.org/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course gives a global view on many fields in Computer Science so it provides the student a more general expertise in Computer Science;

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation methods	10.3
	criteria		Share in
			the grade
			(%)

10.4 Course	Knowing the	The final grade is: Min(E+P+B, 10)	100%			
	milestones in	where:				
	the evolution of	• E = the score obtained at the final quiz exam;				
	Computer	the maximum score that can be obtained at the				
	Science.	quiz exam is 7				
		• P = course activity, i.e. the number of course				
		attendances; P can be maximum 6				
		• $B = 1$ bonus point obtained to the test given				
		during the semester at the course (of course if				
		the student answers correctly)				
		If the student is not present at the final quiz exam or				
		the test or he/she does not have any course attendances,				
		his/her corresponding scores, E, B or P will be 0. The				
		student must get a score larger than 3 to the final quiz				
		exam and a final grade of at least 5 in order to pass.				
10.5 Seminar/lab						
activities						
10.6 Minimum per	10.6 Minimum performance standards					
☐ In order to	successfully pass this	s class, students must get at least 5.				

Date

Signature of course coordinator

Signature of seminar coordinator

23.05.2022

Conf.PhD. Adrian Sterca

Conf.PhD. Adrian Sterca

Date of approval

Signature of the head of department

Prof. PhD. Laura Dioșan

24.05.2022