SYLLABUS # 1. Information regarding the programme | 1.1 Higher education | Babes-Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computers and Information Technology | | 1.5 Study cycle | Bachelor | | 1.6 Study programme / | Information Engineering | | Qualification | | # 2. Information regarding the discipline | 2.1 Name of the discipline To | | | | st Design Techniqu | ies | | | |-------------------------------|---|----------|---|--------------------------------------|-----|-------------|----------| | 2.2 Course coordinator | | | | Lecturer PhD Camelia Chisăliță-Crețu | | | | | 2.3 Seminar coordinator | | | | Lecturer PhD Camelia Chisăliță-Crețu | | | | | 2.4. Year of | 4 | 2.5 | 8 | 2.6. Type of | C | 2.7 Type of | Optional | | study | | Semester | | evaluation | | discipline | DS | | 2.8 Discipline MLE5110 | | | • | • | - | | | | Code | | MILESTIU | | | | | | ## **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 5 | Of which: 3.2 course | 2 | 3.3 | 1 LP + | | |---|----|----------------------|----|--------------------|--------|--| | Para and Para Date | | 31 | _ | seminar/laboratory | 2 P | | | 3.4 Total hours in the curriculum | 70 | Of which: 3.5 | 28 | 3.6 | 42 | | | | | course | | seminar/laboratory | | | | Time allotment: | | | | | Hours | | | Learning using manual, course support, bibliography, course notes | | | | | 20 | | | Additional documentation (in libraries, on electronic platforms, field documentation) | | | | | 8 | | | Preparation for seminars/labs, homework, papers, portfolios and essays | | | | | 20 | | | Tutorship | | | | | 2 | | | Evaluations | | | | | 5 | | | Other activities: | | | | | - | | | 27 T. 1' 1' 1 1 . 1 1 | | | | | | | | 3.7 Total individual study hours | 55 | |----------------------------------|-----| | 3.8 Total hours per semester | 125 | | 3.9 Number of ECTS credits | 5 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | OOP, Programming Fundamentals, Advanced Programming
Methods | |-------------------|-------------------------------------------------------------------------------------| | 4.2. competencies | Good programming skills in at least one of the programming languages Java, C# | ## **5. Conditions** (if necessary) | 5.1. for the course | Course hall with projector | |---------------------------|---------------------------------------------------------| | 5.2. for the seminar /lab | Laboratory: computers and use of a programming language | | activities | environment | 6. Specific competencies acquired | Professional competencies | C3.2 Using interdisciplinary knowledge, solution patterns and tools, making experiments and interpreting their results C3.3 Applying solution patterns using specific engineering tools and mehods C3.4 Comparatively and experimentally evaluation of the alternative solutions for performance optimization C4.4 Managing the life cycle of hardware, software and communications systems based on performance evaluation | |---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | | • C4.5 Developing, implementing and integrating software solutions | | Transversal | CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge | # **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the | • Enhance the students understanding of testing and test design techniques. | |-------------------------------|---------------------------------------------------------------------------------------| | discipline | • Provide the students with an environment in which they can explore the | | | usage and usefulness of software testing and test design concepts in | | | various business scenarios. | | | • Induce a realistic and industry driven view of software testing concepts | | | and their inherent benefits. | | 7.2 Specific objective of the | • Give students the ability to explore various test design techniques | | discipline | applied to different levels of testing. | | | Improve the students' abilities to tackle on goal driven testing. | | | • Enhance the students understanding of test design techniques value in | | | business. | | | • Students will be able to use various tools for the testing process (i.e., test | | | management, test running, test reporting and bug reporting). | | | • Students will be able to design test cases according to an established | | | testing goal and using specific test design technique in order to | | | investigate the software. | # 8. Content | 8.1 | Course | Teaching methods | Remarks | |-----|-------------------------------------------------|-----------------------------------------------|---------| | 1. | Software Testing. Test Design Techniques | Interactive exposure | | | | 1.1. Software Testing. Goals. Scope | Explanation. Conversation | | | | 1.2. Test Design Technique. Attributes | Didactical demonstration | | | | 1.3. Taxonomy of Test Design Techniques | | | | 2. | Coverage-based Techniques I | Interactive exposure | | | | 2.1. Focus. Objectives | Explanation. Conversation | | | | 2.2. Tours. Logical Expressions | Didactical demonstration | | | 3. | Coverage-based Techniques II | Interactive exposure | | | | 3.1. Specification-based Testing; | • Explanation. Conversation | | | | 3.2. Requirements-based Testing; | Didactical demonstration | | | 4. | Risk-based Techniques I | Interactive exposure | | | | 4.1. Focus. Objectives | Explanation. Conversation | | | | 4.2. HTSM. Failure modes | Didactical demonstration | | | 5. | Risk-based Techniques II | Interactive exposure | | | | 5.1. Risk Management-based Techniques | • Explanation. Conversation | | | | 5.2. Quick-tests. History-based Testing. | Didactical demonstration | | | Usability Testing | | |---------------------------------------------------------------------------------------|--------------------------------------------------------------------------| | 6. Activity-based Techniques I | Interactive exposure | | 6.1. Focus. Objectives | Explanation. Conversation | | 6.2. Use Cases Testing. Scenario Testing | Didactical demonstration | | 7. Activity-based Techniques II | Interactive exposure | | 7.1. Guerilla Testing. All-pairs Testing | Explanation. Conversation | | 7.2. Coverage-based Techniques vs Activity-based Techniques | Didactical demonstration | | 8. Evaluation-based Techniques | Interactive exposure | | 8.1. Focus. Objectives | • Explanation | | 8.2. Function Equivalence Testing. Self- | • Conversation | | verifying data | Didactical demonstration | | 9. Desired result-based Techniques | Interactive exposure | | 9.1. Focus. Objectives | • Explanation. Conversation | | 9.2. Confirmation Testing. User Acceptance | Didactical demonstration | | Testing | 5 Blatter demonstration | | 9.3. Desired-based Techniques vs Evaluation- | | | based Techniques | | | 10. Tester-based Techniques | Interactive exposure | | 10.1.Focus. Objectives | Explanation. Conversation | | 10.2.User Testing. Alpha Testing. Beta Testing | Didactical demonstration | | 10.3.Bug Bashes. Paired Testing. | | | 10.4.Coverage-based Techniques vs Tester-based | | | Techniques 11. Test Design Techniques Analysis | - Interactive even sum | | 11. 1 Test Design Techniques Analysis 11.1. Tester-based Techniques vs Activity-based | Interactive exposureExplanation. Conversation | | Techniques Techniques | Didactical demonstration | | 11.2.Risk-based Techniques vs Coverage-based | • Didactical demonstration | | Techniques | | | 11.3.Desired result-based Techniques vs Risk- | | | based Techniques | | | 12. Security Testing | Interactive exposure | | 12.1.Terminology | Explanation. Conversation | | 12.2.Types | Didactical demonstration | | 12.3.Advanced Techniques | | | 13. Bug Reporting | • Interactive exposure | | 13.1.Challenges | Conversation | | 13.2.RIMGEA Strategy 14. Project Presentations | - Interactive even sure | | 14. I Toject Fresentations | • Interactive exposure | | | Conversation | ## **Bibliography** [Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999. [Brn02] I. Burnstein, Practical Software Testing, Springer, 2002. [Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002. [Mye04] Glenford J. Myers, *The Art of Software Testing*, John Wiley & Sons, Inc., 2004. [Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008. [Crs09] L. Crispin, J. Grecory, *Agile testing: a practical guide for testers and agile teams*, Addison-Wesley, 2009. [Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010. [BBST2008] BBST – Bug Advocacy, http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf [BBST2010] BBST – Fundamentals of Testing, Cem Kaner, http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf. [BBST2011] BBST – Test Design, Cem Kaner, http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf [Whitt2012] J. Whittaker, J. Arbon J. Carollo, *How Google Tests Software*, Google, Pearson Education, 2012. [OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP Testing Guide v4.pdf [NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, *Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software*, International Journal of Natural Computing Research 4(4):15-35, October, 2014. [KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014. [Meer2014] Joris Meerts, Functional Testing Heuritics, https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf [Draghia2019] Claudiu Draghia, *Gamificarea in software testing. Testing Challenges*, http://testingchallenges.thetestingmap.org/, 2019. [ForK2019] István Forgács, Attila Kovács, *Practical Test Design Selection of traditional and automated test design techniques*, BCS, 2019. [BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, *Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study*, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067. [AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, *Comparative Analysis of Software Testing Techniques for Mobile Applications*, Journal of Physics: Conference Series, vol 1793, 2021. [PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, *Learning to Describe Solutions for Bug Reports Based on Developer Discussions*, ACL 2022, pp. 2935 – 2952. | Describe Solutions for Bug Reports Based on Developer Discussions, ACL 2022, pp. 2955 – 2952. | | | | | | |-----------------------------------------------------------------------------------------------|---------------------------------------|---------|--|--|--| | 8.2 Seminar / laboratory | Teaching methods | Remarks | | | | | 1. Laboratory 1 | Presentation, Conversation, | | | | | | Testing Project Setup | Problematizations, Discovery, Other | | | | | | | methods – individual study, exercises | | | | | | 2. Laboratory 2 | Presentation, Conversation, | | | | | | Coverage-based Techniques | Problematizations, Discovery, Other | | | | | | | methods – individual study, exercises | | | | | | 3. Laboratory 3 | Presentation, Conversation, | | | | | | Risk-based Techniques | Problematizations, Discovery, Other | | | | | | • | methods – individual study, exercises | | | | | | 4. Laboratory 4 | Presentation, Conversation, | | | | | | Test Automation Tools | Problematizations, Discovery, Other | | | | | | | methods – individual study, exercises | | | | | | 5. Laboratory 5 | Presentation, Conversation, | | | | | | Activity-based Techniques | Problematizations, Discovery, Other | | | | | | • | methods – individual study, exercises | | | | | | 6. Laboratory 6 | Presentation, Conversation, | | | | | | Desired result-based Techniques | Problematizations, Discovery, Other | | | | | | | methods – individual study, exercises | | | | | | 7. Laboratory 7 | Evaluation | | | | | | Project turn-in | | | | | | #### **Bibliography** [Kaner99] C. Kaner, J. Falk, H.O. Nguyen, Testing Computer Software, Wiley, 1999. [Brn02] I. Burnstein, *Practical Software Testing*, Springer, 2002. [Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002. [Mye04] Glenford J. Myers, *The Art of Software Testing*, John Wiley & Sons, Inc., 2004. [Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008. [Crs09] L. Crispin, J. Grecory, *Agile testing: a practical guide for testers and agile teams*, Addison-Wesley, 2009. [Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010. [BBST2008] BBST – Bug Advocacy, http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf [BBST2010] BBST – Fundamentals of Testing, Cem Kaner, http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf. [BBST2011] BBST – Test Design, Cem Kaner, http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf [Whitt2012] J. Whittaker, J. Arbon J. Carollo, *How Google Tests Software*, Google, Pearson Education, 2012. [OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP_Testing_Guide_v4.pdf [NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, *Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software*, International Journal of Natural Computing Research 4(4):15-35, October, 2014. [KMS2014] Kaur, Manpreet and Rupinder Singh. A Review of Software Testing Techniques, 2014. [Meer2014] Joris Meerts, Functional Testing Heuritics, https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf [Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges, http://testingchallenges.thetestingmap.org/, 2019. [ForK2019] István Forgács, Attila Kovács, *Practical Test Design Selection of traditional and automated test design techniques*, BCS, 2019. [BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, *Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study*, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067. [AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, *Comparative Analysis of Software Testing Techniques for Mobile Applications*, Journal of Physics: Conference Series, vol 1793, 2021. [PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, *Learning to Describe Solutions for Bug Reports Based on Developer Discussions*, ACL 2022, pp. 2935 – 2952. | Desc | Describe Solutions for Bug Reports Bused on Developer Discussions, Nell 2022, pp. 2735 2732. | | | | | | | |-------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------|--|--|--|--| | 8.3] | Project | Teaching methods | Remarks | | | | | | 1. | Week 01 Software Project Presentation Software project goals Team organization | Presentation, Conversation, Problematizations, | | | | | | | 2. | Week 02 Application Context Information Objectives (Part I and Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | | | | | | 3. | Week 03 Testing Mission (Part I and Part II) Testing Strategy (Part I and Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | | | | | | 4. | Week 04 Test Design Technique Selection (part I and Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | | | | | | 5. | Week 05 Test Design (Part I) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, | | | | | | | | exercises | |-------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | 6. Week 06 Test Design (Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 7. Week 07 Test Implementation (Part I) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 8. Week 08 Test Implementation (Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 9. Week 09 Testing Report (Part I) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 10. Week 10 Testing Report (Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 11. Week 11 Bug Reporting (Part I) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 12. Week 12 Bug Reporting (Part II) | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 13. Week 13 Testing project presentation preparation | Presentation, Conversation, Problematizations, Discovery, Other methods – individual study, exercises | | 14. Week 14 Project turn-in | Evaluation | ### **Bibliography** [Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, *Testing Computer Software*, Wiley, 1999. [Brn02] I. Burnstein, Practical Software Testing, Springer, 2002. [Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002. [Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004. [Nai08] K. Naik, P. Tripathy, *Software testing and quality assurance. Theory and Practice*, A John Wiley & Sons, Inc., 2008. [Crs09] L. Crispin, J. Grecory, *Agile testing: a practical guide for testers and agile teams*, Addison-Wesley, 2009. [Pres10] R. S. Pressman, *Software engineering: a practinioner's approach*, seventh edition, Higher Education, 2010. [BBST2008] BBST – Bug Advocacy, http://www.testingeducation.org/BBST/bugadvocacy/BugAdvocacy2008.pdf [BBST2010] BBST – Fundamentals of Testing, Cem Kaner, http://www.testingeducation.org/BBST/foundations/BBSTFoundationsNov2010.pdf. [BBST2011] BBST – Test Design, Cem Kaner, http://www.testingeducation.org/BBST/testdesign/BBSTTestDesign2011pfinal.pdf [Whitt2012] J. Whittaker, J. Arbon J. Carollo, *How Google Tests Software*, Google, Pearson Education, 2012. [OWASP2014] QWASP, Testing guide 4.0, 2014, https://owasp.org/www-project-web-security-testing-guide/assets/archive/OWASP Testing Guide v4.pdf [NRVR2014] Ana Filipa Nogueira, José Carlos Ribeiro, Francisco Fernández de Vega, Mário Alberto Zenha-Rela, *Object-Oriented Evolutionary Testing: A Review of Evolutionary Approaches to the Generation of Test Data for Object-Oriented Software*, International Journal of Natural Computing Research 4(4):15-35, October, 2014. [KMS2014] Kaur, Manpreet and Rupinder Singh. *A Review of Software Testing Techniques*, 2014. [Meer2014] Joris Meerts, *Functional Testing Heuritics*, https://www.testingreferences.com/docs/Functional_Testing_Heuristics.pdf [Draghia2019] Claudiu Draghia, Gamificarea in software testing. Testing Challenges, http://testingchallenges.thetestingmap.org/, 2019. [ForK2019] István Forgács, Attila Kovács, *Practical Test Design Selection of traditional and automated test design techniques*, BCS, 2019. [BSR2021] F. A. Bhuiyan, M. B. Sharif and A. Rahman, *Security Bug Report Usage for Software Vulnerability Research: A Systematic Mapping Study*, IEEE Access, vol. 9, pp. 28471-28495, 2021, doi: 10.1109/ACCESS.2021.3058067. [AIW2021] Samah W.G. AbuSalim, Rosziati Ibrahim, Jahari Abdul Wahab, *Comparative Analysis of Software Testing Techniques for Mobile Applications*, Journal of Physics: Conference Series, vol 1793, 2021. [PLGM2022] Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, Raymond J. Mooney, *Learning to Describe Solutions for Bug Reports Based on Developer Discussions*, ACL 2022, pp. 2935 – 2952. # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - Students will know how to apply test design techniques for a software product, in a similar way they are used in industry. - Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system. #### 10. Evaluation | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation methods | 10.3 Share in the | |------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------| | | | | grade (%) | | 10.4 Project | Design and develop a testing solution (project) for a software product with focus on test design techniques. The corresponding grade is denoted by P . | Oral Examination | 70% | | 10.5 Seminar/laboratory activities | Each lab activity will be graded. The arithmetic average of the grades is denoted by L . | Laboratory Activity | 30% | #### Remark: - Laboratory assignments will pe achieved in groups of 2-3 students. - Testing project will pe achieved in groups of 4-5 students. ### 10.6 Minimum performance standards • Students will be able to apply test design techniques according to established goals for a software system. - Students will be able to unstandard the differences between software testing goal, scope, and test design technique concepts. - The final grade (M) is computed as follows: M = 30%L + 70%P. • At least $M \ge 5.00$ is favourable to pass this course exam. Date Signature of course coordinator Signature of seminar coordinator 17.05.2022 Lect. PhD. Camelia Chisăliță-Crețu, Lect. PhD. Camelia Chisăliță-Crețu, Christita Christitz Date of approval Signature of the head of department Prof. PhD. Laura Dioșan 24.05.2022