SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Information Engineering

2. Information regarding the discipline

2.1 Name of the dis	sciplin	ne (en)	en) Software Engineering				
(ro)			Inginerie software				
2.2 Course coordin	2.2 Course coordinator		Lect. dr. Vladiela Petrașcu				
2.3 Seminar coordinator			Lect. dr. Vladiela Petrașcu				
2.4. Year of study	3	2.5 Semester	6	2.6. Type of	Е	2.7 Type of	Compulsory
				evaluation		discipline	DD
2.8 Code of the		MLE5177					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	6	Of which: 3.2 course	2	3.3	1 S
				seminar/laboratory	1 LP
					1 P
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					Hours
Learning using manual, course support, bibliography, course notes					19
Additional documentation (in libraries, on electronic platforms, field documentation)				18	
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship				7	
Evaluations				8	
Other activities:					
0.7.75 + 11 11 11 1 1 1		0.0			

3.7 Total individual study hours	80
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of ProgrammingObject-Oriented Programming
4.2. competencies	Programming in a high-level object-oriented language

5. Conditions (if necessary)

5.1. for the course	Videoprojector
5.2. for the seminar /lab	• Computers
activities	UML Case Tool
	• Java/.NET IDE

6. Specific competencies acquired

0. Specif	ic competencies acquired	
	C4.1 Identifying and describing technologies, programming environments and various concepts	
S	that are specific to programming engineering	
Professional competencies	C4.2 Explaining the role, interaction and operation patterns of software system components	
100	C4.3 Developing specifications and designing information systems using specific methods and tools	
nal		
C4.4 Managing the life cycle of hardware, software and communications systems based performance evaluation		
Pr	C4.5 Developing, implementing and integrating software solutions	
	CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional	
_ &	reputation	
Sal	CT2 Identifying, describing and conducting processes in the project management field,	
Transversal competencies	undertaking different team roles and clearly and concisely describing own professional results,	
nsı	verbally or in writing.	
ra	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical	
L	and organizational culture knowledge	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Aquiring knowledge of and applying sound concepts, principles and engineering techniques when building software systems
7.2 Specific objective of the discipline	 Aquiring knowledge of software lifecycle stages and process models Understanding software modeling Aquiring knowledge of and applying model-based software development techniques Getting used to correctly apply the UML language Aquiring ability to use UML Case tools Aquiring basic project management knowledge Aquiring knowledge of software development methodologies, both traditional and agile

8. Content

8.1 Course	Teaching methods	Remarks	
1. Introduction to Software Engineering: motivation,	Explanation, conversation,		
definitions, concepts, activities	discussing case studies		
2. Software lifecycle stages. Software process models	Explanation, conversation,		
	discussing case studies		
3. Software complexity management techniques	Explanation, conversation,		
(abstraction, decomposition, modeling). Modeling in	discussing case studies		
Software Engineering: definitions, model types and			
modeling tools			
4. Introduction to the UML language: concepts, diagram	Explanation, conversation,		
types, syntax/semantics, tools	discussing case studies		
5. Requirements Elicitation: concepts, activities,	Explanation, conversation,		
examples	discussing case studies		
6. Requiements Analysis: concepts, activities, examples	Explanation, conversation,		
	discussing case studies		
7. System Design: concepts, principles, activities	Explanation, conversation,		
	discussing case studies		
8. Object Design: concepts, principles, activities	Explanation, conversation,		
	discussing case studies		
9. Object Design - Design Patterns	Explanation, conversation,		
	discussing case studies		
10. Object Design – Interface Specification. Design by	Explanation, conversation,		
Contract – using assertions in modeling	discussing case studies		
11. System Implementation. Model-based code	Explanation, conversation,		
generation: concepts, principles, activities, examples	discussing case studies		
12. Software Verification and Validation	Explanation, conversation,		
	discussing case studies		
13. Software Management: concepts and activities	Explanation, conversation,		
	discussing case studies		
14. Software Development Methodologies. Model Driven	Explanation, conversation,		
Engineering (MDE)	discussing case studies		

Bibliography

Bibliografie

- [1] Booch, G., Rumbaugh, J., Jacobson, I., *The Unified Modeling Language User Guide V.2.0*, Addison Wesley, 2005.
- [2] Brambilla, M., Cabot, J., Wimmer, M., *Model-Driven Software Engineering in practice* 2nd edition, Morgan and Claypool Publishers, 2017.
- [3] Bruegge, B., Dutoit, A., Object-Oriented Software Engineering Using UML, Patterns and Java 3rd ed., Pearson Education, 2014.
- [4] Fowler, M. et al., Refactoring Improving the Design of Existing Code, Addison Wesley, 1999.

- [5] Fowler, M, UML Distilled: A Brief Guide to the Standard Object Modeling Language 3rd ed., Addison-Wesley, 2003.
- [6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-Wesley, 1996.
- [7] Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.
- [8] Pressman, R.S., Software Engineering A Practitioners Approach 8th ed., McGraw-Hill, 2014.
- [9] Seidl, M., Scholz, M., Huemer, C., Kappel, G., *UML* @ *Classroom: An Introduction to Object-Oriented Modeling*, Springer International Publishing, 2015.
- [10] Schach, S.R., Object-Oriented and Classical Software Engineering 8th ed., McGraw-Hill, 2010.
- [11] Sommerville, I., Software Engineering 10th ed., Pearson, 2015.

Links:

- [1] OMG UML 2.5.1 About the Unified Modeling Language Specification Version 2.5.1 (omg.org)
- [2] OMG OCL 2.4 About the Object Constraint Language Specification Version 2.4 (omg.org)
- [3] StarUML StarUML
- [4] OCLE OCLE 2.0 Object Constraint Language Environment (ubbcluj.ro)
- [5] Eclipse Modeling Framework Eclipse Modeling Project | The Eclipse Foundation

8.2 Seminar	Teaching methods	Remarks
1. Using Use Case Diagrams to describe a functional	explanation, conversation,	A 2h seminar
model: concepts, relations, syntax, use case description	arguing, exemplifying	every other week
templates		
2. Using Class Diagrams to describe structural models:	explanation, conversation,	
concepts, relations, syntax, problem domain model vs.	arguing, exemplifying	
solution model		
3. Using Sequence/Communication Diagrams to describe	explanation, conversation,	
dynamic models: concepts. syntax, equivalence	arguing, exemplifying	
A III'm Control Discours to describe describe	14:	
4. Using Statechart Diagrams to describe dynamic	explanation, conversation,	
models. The <i>State</i> Design Pattern	arguing, exemplifying	
5. The use of assertions in modeling. Design by Contract	explanation, conversation,	
3. The use of assertions in modernig. Design by Contract	-	
	arguing, exemplifying	
6. Automatic code generation based on UML/OCL	explanation, conversation,	
models	arguing, exemplifying	

7. Testing: concepts, principles, tools	explanation, conversation, arguing, exemplifying	

8.3 Laboratory	Teaching methods	Remarks
1. Agile methodologies: planning software development.	explaining, arguing,	A 2h lab
Investigating various UML/OCL Case Tools (ex. StarUML,	exemplifying	every other
OCLE)		week
2. Using an UML Case Tool for drawing Use Case Diagrams	explaining, arguing,	
	exemplifying	
3. Using an UML Case Tool for drawing Class Diagrams	explaining, arguing,	
corresponding to the problem domain	exemplifying	
4. Using an UML Case Tool for drawing	explaining, arguing,	
Sequence/Communication Diagrams and refining the	exemplifying	
structural model		
5. Using an UML Case Tool for drawing Statechart	explaining, arguing,	
Diagrams	exemplifying	
6. Using an UML/OCL Case Tool for specifying/evaluating	explaining, arguing,	
assertions on UML models	exemplifying	
7. Using an UML/OCL Case Tool for code generation	explaining, arguing,	
	exemplifying	

8.4 Project	Teaching methods	Remarks
1. Assigning to each student a small/medium size application that he/she should build, passing through all lifecycle stages and developing the corresponding models	Arguing, exemplifying	A 2h lab every other week
2. Requirements Elicitation: using an UML Case tool and a text editor for developing the functional model of the application. 3 iterations use case planning. Developing a GUI prototype	Arguing, exemplifying	
3. Requirements Analysis: using an UML Case tool for developing the domain (conceptual) model	Arguing, exemplifying	
4. Software Design & Implementation: using an UML Case tool for developing dynamic models (interaction diagrams) and an IDE for implementing the use cases corresponding to the 1 st iteration	Arguing, exemplifying	
5. Software Design & Implementation: using an UML Case tool for developing dynamic models (interaction diagrams) and an IDE for implementing the use cases corresponding to the 2 nd & 3 rd iterations	Arguing, exemplifying	
6. Testing the application7. Creating the user guide and delivering the buit application	Arguing, exemplifying Arguing, exemplifying	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course obeys to the ACM/IEEE curricula guidelines for computer science study programs
- Similar courses are taught at most universities in Romania having similar study programs
- Software companies view this course as offering important background knowledge for future software developers

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course/Seminar	Knowledge of the basic software engineering concepts and principles taught Software modeling knowledge and ability to use the UML language in this purpose	Written exam	60%	
10.5 Laboratory/Project	Applying aquired knowledge in building a small/medium-sized software system	Project	40%	
10.6 Minimum performance standards				
➤ At least grade 5 at both written exam and project				

Date Signature of course coordinator Signature of seminar coordinator

17.05.2022

Date of approval Signature of the head of department

Prof. dr. Laura Dioşan

Metrosa

24.05.2022