

SYLLABUS

1. Information regarding the programme

1.1 Higher education institution Babeş-Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computers and Information Technology

1.5 Study cycle Bachelor

1.6 Study programme / Qualification Information Engineering

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Software Engineering

Inginerie software

2.2 Course coordinator Lect. dr. Vladiela Petrașcu

2.3 Seminar coordinator Lect. dr. Vladiela Petrașcu

2.4. Year of study 3 2.5 Semester 6 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

DD

2.8 Code of the

discipline

MLE5177

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory

1 S

1 LP

1 P

3.4 Total hours in the curriculum 70 Of which: 3.5 course 28 3.6

seminar/laboratory

42

Time allotment: Hours

Learning using manual, course support, bibliography, course notes 19

Additional documentation (in libraries, on electronic platforms, field documentation) 18

Preparation for seminars/labs, homework, papers, portfolios and essays 28

Tutorship 7

Evaluations 8

Other activities:

3.7 Total individual study hours 80

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum  Fundamentals of Programming

 Object-Oriented Programming

4.2. competencies  Programming in a high-level object-oriented language

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

C4.1 Identifying and describing technologies, programming environments and various concepts

that are specific to programming engineering

C4.2 Explaining the role, interaction and operation patterns of software system components

C4.3 Developing specifications and designing information systems using specific methods and

tools

C4.4 Managing the life cycle of hardware, software and communications systems based on

performance evaluation

C4.5 Developing, implementing and integrating software solutions

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional

reputation

CT2 Identifying, describing and conducting processes in the project management field,

undertaking different team roles and clearly and concisely describing own professional results,

verbally or in writing.

CT3 Demonstrating initiative and pro-active behavior for updating professional, economical

and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

5.1. for the course  Videoprojector

5.2. for the seminar /lab

activities

 Computers

 UML Case Tool

 Java/.NET IDE

7.1 General objective of the

discipline

 Aquiring knowledge of and applying sound concepts, principles and

engineering techniques when building software systems

7.2 Specific objective of the

discipline

 Aquiring knowledge of software lifecycle stages and process models

 Understanding software modeling

 Aquiring knowledge of and applying model-based software

development techniques

 Getting used to correctly apply the UML language

 Aquiring ability to use UML Case tools

 Aquiring basic project management knowledge

 Aquiring knowledge of software development methodologies, both

traditional and agile

8. Content

8.1 Course

Teaching methods Remarks

1. Introduction to Software Engineering: motivation,

definitions, concepts, activities

Explanation, conversation,

discussing case studies

2. Software lifecycle stages. Software process models Explanation, conversation,

discussing case studies

3. Software complexity management techniques

(abstraction, decomposition, modeling). Modeling in

Software Engineering: definitions, model types and

modeling tools

Explanation, conversation,

discussing case studies

4. Introduction to the UML language: concepts, diagram

types, syntax/semantics, tools

Explanation, conversation,

discussing case studies

5. Requirements Elicitation: concepts, activities,

examples

Explanation, conversation,

discussing case studies

6. Requiements Analysis: concepts, activities, examples Explanation, conversation,

discussing case studies

7. System Design: concepts, principles, activities Explanation, conversation,

discussing case studies

8. Object Design: concepts, principles, activities Explanation, conversation,

discussing case studies

9. Object Design - Design Patterns Explanation, conversation,

discussing case studies

10. Object Design – Interface Specification. Design by

Contract – using assertions in modeling

Explanation, conversation,

discussing case studies

11. System Implementation. Model-based code

generation: concepts, principles, activities, examples

Explanation, conversation,

discussing case studies

12. Software Verification and Validation Explanation, conversation,

discussing case studies

13. Software Management: concepts and activities Explanation, conversation,

discussing case studies

14. Software Development Methodologies. Model Driven

Engineering (MDE)

Explanation, conversation,

discussing case studies

Bibliography

Bibliografie

[1] Booch, G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language User Guide - V.2.0, Addison

Wesley, 2005.

[2] Brambilla, M., Cabot, J., Wimmer, M., Model-Driven Software Engineering in practice – 2nd

edition, Morgan and Claypool Publishers, 2017.

[3] Bruegge, B., Dutoit, A., Object-Oriented Software Engineering Using UML, Patterns and Java –

3rd ed., Pearson Education, 2014.

[4] Fowler, M. et al., Refactoring - Improving the Design of Existing Code, Addison Wesley, 1999.

[5] Fowler, M, UML Distilled: A Brief Guide to the Standard Object Modeling Language - 3rd ed.,

Addison-Wesley, 2003.

[6] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns, Addison-Wesley, 1996.

[7] Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.

[8] Pressman, R.S., Software Engineering - A Practitioners Approach - 8th ed., McGraw-Hill, 2014.

[9] Seidl, M., Scholz, M., Huemer, C., Kappel, G., UML @ Classroom: An Introduction to Object-

Oriented Modeling, Springer International Publishing, 2015.

[10] Schach, S.R., Object-Oriented and Classical Software Engineering - 8th ed., McGraw-Hill, 2010.

[11] Sommerville, I., Software Engineering - 10th ed., Pearson, 2015.

Links:

[1] OMG UML 2.5.1 - About the Unified Modeling Language Specification Version 2.5.1 (omg.org)

[2] OMG OCL 2.4 - About the Object Constraint Language Specification Version 2.4 (omg.org)

[3] StarUML - StarUML

[4] OCLE - OCLE 2.0 - Object Constraint Language Environment (ubbcluj.ro)

[5] Eclipse Modeling Framework - Eclipse Modeling Project | The Eclipse Foundation

8.2 Seminar Teaching methods Remarks

1. Using Use Case Diagrams to describe a functional

model: concepts, relations, syntax, use case description

templates

explanation, conversation,

arguing, exemplifying

A 2h seminar

every other week

2. Using Class Diagrams to describe structural models:

concepts, relations, syntax, problem domain model vs.

solution model

explanation, conversation,

arguing, exemplifying

3. Using Sequence/Communication Diagrams to describe

dynamic models: concepts. syntax, equivalence

explanation, conversation,

arguing, exemplifying

4. Using Statechart Diagrams to describe dynamic

models. The State Design Pattern

explanation, conversation,

arguing, exemplifying

5. The use of assertions in modeling. Design by Contract explanation, conversation,

arguing, exemplifying

6. Automatic code generation based on UML/OCL

models

explanation, conversation,

arguing, exemplifying

https://www.omg.org/spec/UML
https://www.omg.org/spec/OCL
https://staruml.io/
http://lci.cs.ubbcluj.ro/ocle/
https://www.eclipse.org/modeling/emf/

7. Testing: concepts, principles, tools explanation, conversation,

arguing, exemplifying

8.3 Laboratory Teaching methods Remarks

1. Agile methodologies: planning software development.

Investigating various UML/OCL Case Tools (ex. StarUML,

OCLE)

explaining, arguing,

exemplifying

A 2h lab

every other

week

2. Using an UML Case Tool for drawing Use Case Diagrams explaining, arguing,

exemplifying

3. Using an UML Case Tool for drawing Class Diagrams

corresponding to the problem domain

explaining, arguing,

exemplifying

4. Using an UML Case Tool for drawing

Sequence/Communication Diagrams and refining the

structural model

explaining, arguing,

exemplifying

5. Using an UML Case Tool for drawing Statechart

Diagrams

explaining, arguing,

exemplifying

6. Using an UML/OCL Case Tool for specifying/evaluating

assertions on UML models

explaining, arguing,

exemplifying

7. Using an UML/OCL Case Tool for code generation explaining, arguing,

exemplifying

8.4 Project Teaching methods Remarks

1. Assigning to each student a small/medium

size application that he/she should build,

passing through all lifecycle stages and

developing the corresponding models

Arguing, exemplifying A 2h lab

every

other week

2. Requirements Elicitation: using an UML Case

tool and a text editor for developing the

functional model of the application. 3

iterations use case planning. Developing a

GUI prototype

Arguing, exemplifying

3. Requirements Analysis: using an UML Case

tool for developing the domain (conceptual)

model

Arguing, exemplifying

4. Software Design & Implementation: using an

UML Case tool for developing dynamic

models (interaction diagrams) and an IDE for

implementing the use cases corresponding to

the 1
st
 iteration

Arguing, exemplifying

5. Software Design & Implementation: using an

UML Case tool for developing dynamic

models (interaction diagrams) and an IDE for

implementing the use cases corresponding to

the 2
nd

 & 3
rd

 iterations

Arguing, exemplifying

6. Testing the application Arguing, exemplifying

7. Creating the user guide and delivering the buit

application

Arguing, exemplifying

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The course obeys to the ACM/IEEE curricula guidelines for computer science study programs

 Similar courses are taught at most universities in Romania having similar study programs

 Software companies view this course as offering important background knowledge for future software

developers

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course/Seminar Knowledge of the basic

software engineering

concepts and principles

taught

Written exam 60%

Software modeling

knowledge and ability to

use the UML language in

this purpose

10.5 Laboratory/Project Applying aquired

knowledge in building a

small/medium-sized

software system

Project 40%

10.6 Minimum performance standards

 At least grade 5 at both written exam and project

Date Signature of course coordinator Signature of seminar coordinator

17.05.2022

Date of approval Signature of the head of department

 Prof. dr. Laura Dioşan

24.05.2022

