SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computers and Information Technology
1.5 Study cycle	Bachelor
1.6 Study programme /	Information Engineering
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en) (ro)		Artificial Intelligence/ Inteligență Artificială					
2.2 Course coordinator		L	ect. Dr. Mircea	Ioan-Gabri	el		
2.3 Seminar coordinator		Lect. Dr. Mircea Ioan-Gabriel					
2.4. Year of study	3	2.5 Semester	6	2.6. Type of evaluation	Exam	2.7 Type of discipline	Compulsory DD
2.8 Code of the disc	cipline	MLE5029					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	6	Of which: 3.2 course	2	3.3	2LP
				seminar/laboratory	2P
3.4 Total hours in the curriculum	84	Of which: 3.5 course	28	3.6	56
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					12
Additional documentation (in libraries, on electronic platforms, field documentation)					6
Preparation for seminars/labs, homework, papers, portfolios and essays				12	
Tutorship				3	
Evaluations				8	
Other activities:					
0.7.m + 11 11 11 1 + 1 1		4.1			

3.7 Total individual study hours	41
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	 mathematical analysis, data structures and algorithms, problem solving, statistics
4.2. competencies	 Object oriented programming competencies, algorithmic reasoning, logical reasoning

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

6. Specific competencies acquir	cu
Professional competencies	C6.1 Description of the basic concepts for the representation and characterization of signals and the basic concepts of artificial intelligence C6.2 Appropriate use of methods for analyzing fundamental artificial intelligence signals and algorithms C6.3 Use of simulation and programming environments to process signals and model solutions to problem classes C6.4 Quantitative and qualitative evaluation of the performance of intelligent systems C6.5 Incorporate signal processing methods and artificial intelligence solutions into dedicated applications
	CT1 Honorable, responsible, ethical conduct in the spirit of the law to ensure the reputation of the profession CT3 Demonstrate the spirit of initiative and action to update professional, economic and organizational culture knowledge

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Presenting the evolution of Artificial Intelligence in
discipline	a historical fashion with emphasis on the new advancements
	and ethical aspects
7.2 Specific objective of the	Understanding general AI vs narrow AI
discipline	Understanding basic Machine Learning
	 Understanding traditional AI
	 Understanding Deep Learning
	Using AI in real contexts (especially embedded
	contexts)
	•

8. Content

8.1 Course	Teaching methods	Remarks
AI : Past, Present and Future - An introduction Historical evolution of AI An ontology of AI	Interactive exposure Explanation Conversation Didactical demonstration	
Teaching the machine: supervised classification - Perceptron, Artificial Neural Network	Interactive exposure Explanation Conversation Didactical demonstration	
Teaching the machine: supervised regression - Artificial Neural Network	Interactive exposure Explanation Conversation Didactical demonstration	

4. Teaching the machine: clustering and association, dimensionality reduction - KNN, K-means, SOM, PCA. Data visualization and preprocessing 5. Training and evaluating Machine Learning Models. Loss. Overfitting	Interactive exposure Explanation Conversation Didactical demonstration Interactive exposure Explanation Conversation Didactical demonstration	
6. Properly Searching for Solutions: Backtracking, DFS, BFS, A*, GAs, ACO - TSP Constraint Satisfaction Problems: one player games Sudoku	Interactive exposure Explanation Conversation Didactical demonstration	
7. Reinforcement Learning	Interactive exposure Explanation Conversation Didactical demonstration	
8. Game Theory and Estimation Theory more player games Hidden Markov Models	Interactive exposure Explanation Conversation Didactical demonstration	
9-10-11. Going deeper into the Rabit Hole: The quest for the Real AI Deep Neural Networks - Main Ideas CNNs, RNNs,	Interactive exposure Explanation Conversation Didactical demonstration	
12. The Imitation Game: Mimicking Humanity Spiking Nets, NLP, R-CNNs, Autoencoders, GANs	Interactive exposure Explanation Conversation Didactical demonstration	
13. Deploying and embedding AI algorithms in Real- Life: Computational Challenges, Intelligent IoT, Robots, Autonomous Driving	Interactive exposure Explanation Conversation Didactical demonstration	
14. The Present and Future of AI: Ethical Aspects	Interactive exposure Explanation Conversation Didactical demonstration	

Bibliography

Programming Fundamentals

- 1. Donald E. Knuth. 2011. The Art of Computer Programming: Combinatorial Algorithms, Part 1 (1st. ed.). Addison-Wesley Professional.
- 2. Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language (2nd. ed.). Prentice Hall Professional Technical Reference.
- 3. Bruce Eckel. 2000. Thinking in C++, Volume I: Introduction to Standard C++, Second Edition (2nd. ed.). Prentice Hall PTR, USA.
- 4. Dijkstra, Edsger W. A Discipline of Programming. 1976.
- 5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition (3rd. ed.). The MIT Press.
- 6. Thomas H. Cormen. 2013. Algorithms Unlocked. The MIT Press.
- Antti Laaksonen, Guide to Competitive Programming Learning and Improving Algorithms Through Contests, Second Edition. <u>Undergraduate Topics in Computer Science</u>, Springer 2020, ISBN 978-3-030-39356-4, pp. 1-296

Artificial Intelligence

1. Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd. ed.).

- Prentice Hall Press, USA.
- 2. Géron, Aurélien. Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed., O'Reilly, 2019.
- David James. 2018. Introduction to Machine Learning with Python: A Guide for Beginners in Data Science (1st. ed.). CreateSpace Independent Publishing Platform, North Charleston, SC, USA.
- 4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. The MIT Press.

ΙοΤ

- 1. Dimitrios Serpanos and Marilyn Wolf. 2017. Internet-of-Things (IoT) Systems: Architectures, Algorithms, Methodologies (1st. ed.). Springer Publishing Company, Incorporated.
- 2. Samuel Greengard. 2015. The Internet of Things. The MIT Press.

Scientific Research

- Justin Zobel. 2015. Writing for Computer Science (3rd. ed.). Springer Publishing Company, Incorporated.
- Philip W.L. Fong. 2009. Reading a computer science research paper. SIGCSE Bull. 41, 2 (June 2009), 138–140. DOI:https://doi.org/10.1145/1595453.1595493
- 3. Lury, Celia. Routledge Handbook of Interdisciplinary Research Methods., 2018.
- Repko, Allen F, et al. Case Studies in Interdisciplinary Research. Thousand Oaks, CA: SAGE Publications, Inc., 2012. SAGE Research Methods. 13 Jan 2021, doi: http://www.doi.org/10.4135/9781483349541
- 5. Repko, Allen F, Rick Szostak, and Michelle P. Buchberger. Introduction to Interdisciplinary Studies., 2017.
- 6. Repko, Allen F, and Rick Szostak. Interdisciplinary Research: Process and Theory., 2017.

8.2 Project	Teaching methods	Remarks
Week 1: How to make a sentient AI Robot	Lab assignment	
Week 2: Perceptron	Explanation	
Week 3: Neural Network	Conversation	
Week 4: Unsupervised Learning	Scientific method	
Week 5: Decision Making		
Week 6:Making the Robot move on a 2D surface		
Week 7:Reinforcement Learning		
Week 8:Spiking Neural Networks		
Week 9:Face Detection		
Week 10:Face Recognition		
Week 11:Sound Processing(Speech to text/Text to		
speech)		
Week 12:Emotion Detection		
Week 13:Music and Image Generation		
Week 14:Putting it all together		
8.3 Seminar / laboratory	Teaching methods	Remarks
Laboratories		
Labs are viewed as workshops. The assignments		
are submitted on git and graded by the teacher. The		
student is informed of his grading in a detailed		
manner. Students can contest the grades on their		
assignments at the beginning of the lab.		

Lab 1: represents workshops concerning the	Lab assignment
implementation, from scratch, of a perceptron for	Explanation
the machine learning of the AND logical operation.	Conversation
Lab 2: regards the implementation of a	Scientific method
minimalistic ANN for the machine learning of the	Scientific method
XOR logical operation.	
HW:implement an ANN from scratch for the	
fulladder of two bits and two bits	
Lab 3: focuses on the employment of the ANN	
for solving regression problems, loss computation	
and mainly on the entire flow: data preprocessing	
and analysis -> training (and validation) -> testing.	
Lab 4 the supervised methods of ML are	
compared and contrasted against unsupervised	
implementations. a SOM implementation is given as	
part of the workshop	
HW:train an ANN for nonlinear regression and	
a KNN for clustering on the iris dataset (with tools)	
Lab 5 focuses on searching algorithms: having	Lab assignment
TSP as the problem to beat, we discuss one by one	Explanation
the implementation of the bruteforce approach, the	Conversation
branch&bound and the simulated annealing. Also	Scientific method
oranomecound and the simulated announing. This	Scientific method
Lab 6 introduces an implementation for a genetic	
used on the TSP problem.	
HW: employ the genetic algorithm to solve the	
TCP	
Lab 7 tackles decision making in the context of	
uncertainty and probability. The workshop covers	
the implementation of a decision tree and the basis	
of fuzzy sets and variables.	
Lab 8 regards the implementation of a Hidden	
Markov Model.	
HW: transform the decision tree implemented in	
the workshop into a fuzzy decision tree using the	
already implemented fuzzy constructs	
direday impremented fuzzy constructs	
The last six workshops won't cover actual	Lab assignment
implementations. Their purpose is to illustrate the	Explanation
proper usage of the most popular industrial	Conversation
frameworks in the deep learning realm: tensorflow,	
keras, pytorch, etc. as well as spectacular products at	Scientific method
work.	
Lab 9: Convolutional Neural Networks -	
introduction	
Lab 10: Convolutional Neural Networks -	
approfundation	
Lab 11: Recurrent Neural Networks	
Lab 12: LSTMS	
Lab 13: Autoencoders	
Lab 14: Generative Adversial Networks	
HW:run two or three methods of solving on	
the same problem and construct a table of	
performance comparison between the techniques	
on the same benchmark	

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course follows the IEEE and ACM curricular recommendations for computer science studies

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade	
			(%)	
10.4 Course	Proper understanding of scientific research methodologies in Computer Science Proper scientific ethics	Final Written Exam+Quizzes (Good quizzes answers can boost the written exam grade with one point)	25%	
10.5 Seminar / lab activities	Framework design and architecture. Programming principles and practices. Testing.	Scientific Essay	10%	
	Software application design. Programming principles and practices. Testing.	Peer Review	10%	
	IoT software design. Programming principles and practices. Testing.	Lab Homework (5 Assignments)	35%	
10.5.1 Project	IoT software design. Programming principles and practices. Testing.	Implementation of a sentient AI Robot	20%	
10.6 Minimum performance standards				
• Minimum 5 grade	Minimum 5 grade for the course and lab activity			

Date

Signature of course coordinator

Signature of seminar coordinator

Mai 2022

24.05.2022

Date of approval Signature of the head of department

Prof. dr. Laura Dioșan

Sol