SYLLABUS ## 1. Information regarding the programme | 1.1 Higher education | Babes-Bolyai University | |-----------------------|---| | institution | | | 1.2 Faculty | Faculty of Mathematics and Computer Science | | 1.3 Department | Department of Computer Science | | 1.4 Field of study | Computers and Information Technology | | 1.5 Study cycle | Bachelor | | 1.6 Study programme / | Information Engineering | | Qualification | | ## 2. Information regarding the discipline | 2.1 Name of the | dis | scipline Re | obo | tic Process Automati | ion (A | utomatizarea | proceselor de business) | |-----------------|------|-------------|-----|--------------------------|--------|----------------|-------------------------| | 2.2 Course coor | din | ator | | Lecturer PhD Came | lia Cl | nisăliță-Crețu | | | 2.3 Seminar cod | ordi | nator | | Lecturer PhD Came | lia Cl | nisăliță-Crețu | | | 2.4. Year of | 3 | 2.5 | | 2.6. Type of | C | 2.7 Type of | Optional | | study | | Semester | | evaluation | | discipline | DS | | 2.8 Discipline | | MLE5147 | | | • | | | | Code | | WILE514/ | | | | | | ### **3. Total estimated time** (hours/semester of didactic activities) | 3.1 Hours per week | 5 | Of which: 3.2 course | 2 | 3.3 | 1 LP | |--|--------|---------------------------|--------|--------------------|-------| | | | | | seminar/laboratory | | | 3.4 Total hours in the curriculum | 56 | Of which: 3.5 course | 28 | 3.6 | 42 | | | | | | seminar/laboratory | | | Time allotment: | | | | | Hours | | Learning using manual, course suppor | t, bib | oliography, course notes | S | | 11 | | Additional documentation (in libraries | , on | electronic platforms, fie | eld do | cumentation) | 11 | | Preparation for seminars/labs, homewo | ork, j | papers, portfolios and e | ssays | | 11 | | Tutorship | | | | | 6 | | Evaluations | | | | | 5 | | Other activities: | | | | | - | | 3.7 Total individual study hours | 44 | |----------------------------------|-----| | 3.8 Total hours per semester | 100 | | 3.9 Number of ECTS credits | 4 | ## **4. Prerequisites** (if necessary) | 4.1. curriculum | OOP, Programming Fundamentals, Advanced Programming
Methods | |-------------------|--| | 4.2. competencies | Good programming skills in at least one of the programming | | | languages Java, C# | ## **5. Conditions** (if necessary) | 5.1. for the course | Course hall with projector | |---------------------------|---| | 5.2. for the seminar /lab | Laboratory: computers and use of a programming language | | activities | environment | 6. Specific competencies acquired | Professional competencies | C4.2 Explaining the role, interaction and operation patterns of software system components C4.4 Managing the life cycle of hardware, software and communications systems based on performance evaluation C4.5 Developing, implementing and integrating software solutions | |---------------------------|---| | Transversal competencies | CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational culture knowledge | ## **7. Objectives of the discipline** (outcome of the acquired competencies) | 7.1 General objective of the discipline | • Enhance the students understanding on business process identification and its automation. | |--|---| | | • Provide the students with an environment in which they can explore the usage and usefulness of software development to increase efficiency in business processes. | | | • Induce a realistic and industry driven view of software development for business process automation related concepts and their inherent benefits. | | 7.2 Specific objective of the discipline | • Give students the ability to explore various ways to automate business processes. | | | • Improve the students' abilities to tackle on goal driven process automation. | | | • Enhance the students understanding of process automation value in business. | | | • Students will be able to use various tools, e.g., UiPath Studio, in order to | | | provide a process automation solution. | | | • Students will be able to design and develop a business process automation | | | solution following specific requirements and real world case studies. | ## 8. Content | 8.1 | Course | Teaching methods | Remarks | |-----|--|---|---------| | 1. | Robotic Process Automation (RPA) | Interactive exposure | | | | 1.1. Business Process Identification | • Explanation. Conversation | | | | 1.2. Introduction to UiPath Studio | Didactical demonstration | | | | 1.2.1. Basics concepts | | | | | 1.2.2. UiPath Platform Architecture | | | | 2. | Data manipulation | Interactive exposure | | | | 2.1. Variables. Data types | Explanation. Conversation | | | | 2.2. Control flow structures | Didactical demonstration | | | | 2.3. Scalar variables. Collections. Tables | | | | | 2.4. Text manipulation | | | | 3. | User Events. Recorder | Interactive exposure | | | | 3.1. User Events | Explanation. Conversation | | | | 3.2. Recorder | Didactical demonstration | | | | 3.2.1. Basic recording | | | | | 3.2.2. Desktop recording | | | | | 3.2.3. Web recording | | | | 4. | Advanced UI Interaction | Interactive exposure | | | | 4.1. Input/output methods | Explanation. Conversation | | | | 4.2. Screen scraping | Didactical demonstration | | | | 4.3. Data scraping | | | | 5. | Selectors | Interactive exposure | | | 5.1. Definition and access | Explanation. Conversation | |--------------------------------------|-----------------------------| | 5.2. Customization and debugging | Didactical demonstration | | 5.3. Dynamic selectors | | | 6. Image and Text Automation | Interactive exposure | | 6.1. Keyboard Automation | Explanation | | 6.2. Information Retrieval | Conversation | | | Didactical demonstration | | 7. Excel. Data Tables | Interactive exposure | | 7.1. Basic Interactions | • Explanation. Conversation | | 7.2. Data Processing | Didactical demonstration | | 8. PDF Automation | | | 8.1. Data Extraction | interactive emposare | | 8.2. Anchor base Activity | Explanation. Conversation | | <u> </u> | Didactical demonstration | | 9. E-mail Automation | Interactive exposure | | 9.1. E-mail interaction | Explanation. Conversation | | 9.2. E-mail sending | Didactical demonstration | | 10. Orchestrator | Interactive exposure | | 10.1.Basic Features | Explanation. Conversation | | 10.2.Jobs. Scheduler | Didactical demonstration | | 10.3.Assets. Queues | | | 11. Debugging and Exception Handling | Interactive exposure | | 11.1.UiPath debugging tools | Explanation. Conversation | | 11.2.Input issues | Didactical demonstration | | 11.3.Error catching | | | 12. Robotic Enterprise Framework | Interactive exposure | | 12.1.ReFramework Architecture | Explanation. Conversation | | 12.2.Examples | Didactical demonstration | | 13. Testing. Deployment | Interactive exposure | | 13.1.Testing the RPA Solution | • Explanation. Conversation | | 13.2.Deploying an RPA Solution | Didactical demonstration | | 14. RPA Security Related Topics | Interactive exposure | | 14.1.Security Challenges | | | 14.2.IDE Security | - | | 14.3.Robot Security | Didactical demonstration | | 14.4.Orchestrator Security | | | Diblic growths | | #### **Bibliography** 1. Institute for RPA (2015), An Introduction to RPA. A primer, http://irpaai.com/wp-content/uploads/2015/05/Robotic-Process-Automation-June2015.pdf 2. Steve Kaelble (2018), RPA, https://www.icsanalytics.com/wp-content/uploads/2019/02/robotic_process_automation_for_dummies.pdf - 3. KPMG (2018), RPA, https://home.kpmg/content/dam/kpmg/jp/pdf/jp-en-rpa-business-improvement.pdf - 4. Tom Taulli (2020), The robotic Process Automation Handbook. A guide to implementing RPA systems, Apress, https://link.springer.com/book/10.1007/978-1-4842-5729-6 - 5. Guðrún Lilja Sigurðardóttir (2018), Robotic Process Automation Dynamic Roadmap for Successful Implementation, master thesis. - 6. UiPath, https://www.uipath.com/developers/video-tutorials - 7. UiPath Studio Docs (2023) https://docs.uipath.com/studio/docs/release-notes-2022-10-3 - 8. UiPath Academy https://academy.uipath.com/ | 8.2 Seminar / laboratory | Teaching methods | Remarks | |----------------------------|---------------------------------------|---------| | 1. Laboratory 1 | Presentation, Conversation, Dialogue, | | | UiPath Studio installation | Case studies | | | RPA project setup | | | | 2. Laboratory 2 | Presentation, Conversation, Dialogue, | | | Sequences. Flowcharts | Case studies | | | 3. | Laboratory 3 | Presentation, Conversation, Dialogue, | |----|------------------------------------|---------------------------------------| | | Custom activities. Data processing | Case studies | | 4. | Laboratory 4 | Presentation, Conversation, Dialogue, | | | Excel Automation | Case studies | | 5. | Laboratory 5 | Presentation, Conversation, Dialogue, | | | PDFs Automation | Case studies | | 6. | Laboratory 6 | Presentation, Conversation, Dialogue, | | | E-mail Automation | Case studies | | 7. | Laboratory 7 | Evaluation | | | Project turn-in/Demo | | #### **Bibliography** - 1. UiPath, https://www.uipath.com/developers/video-tutorials - 2. UiPath Studio Docs (2023) https://docs.uipath.com/studio/docs/release-notes-2022-10-3 - 3. UiPath Academy https://academy.uipath.com/ # 9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program - Students will know how to design and develop an automation solution for a repetitive business process, considering an identified flow. - Students will know the components of the UiPath platform and to use them properly. #### 10. Evaluation | 10. Didiudion | | | | |-------------------------|--|---------------------|---------------| | Type of activity | 10.1 Evaluation criteria | 10.2 Evaluation | 10.3 Share in | | | | methods | the grade (%) | | 10.4 Seminar/laboratory | Three out of six lab activities are | Laboratory Activity | 30% | | activities | mandatory and will be graded. The | | | | | arithmetic average of the grades is | | | | | denoted by L . | | | | 10.5 Project | Design and develop a solution for | Project grading | 70% | | | business process automation in UiPath | | | | | Studio. The grade is denoted by P . | | | #### Remark: • The automation process project will pe achieved in groups of 2-3 students. #### 10.6 Minimum performance standards - The final grade (M) is computed as follows: M = 30%L + 70%P. - At least $M \ge 5.00$ is favourable to pass this course exam. Date Signature of course coordinator Christitz Signature of seminar coordinator 16.05.2022 Lect. PhD. Camelia Chisăliță-Crețu, Lect. PhD. Camelia Chisăliță-Crețu, Date of approval Signature of the head of department Prof. PhD. Laura Dioşan 24.05.2022