SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Computer Science Department
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Cyber Security
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Securitate Web şi în Internet /				
(ro)			Web and Internet Security			
2.2 Course coordinator	Course coordinator Lect. Dr. Bufnea Darius-Vasile					
2.3 Seminar coordinator			Lect. Dr. Bufnea Darius-Vasile			
2.4. Year of study 1	2.5 Semester	2 2.6. Type of E 2.7 Type of Mandato			Mandatory	
		evaluation discipline				
2.8 Code of the MME8194						
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 1 pr
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					25
Additional documentation (in libraries, on electronic platforms, field documentation)					25
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship				14	
Evaluations				10	
Other activities:				0	
					•

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Computer Architecture, Operating Systems, Computer
	Networks, Web Programming, Modular Arithmetic and

	Cryptography
4.2. competencies	Basic knowledge of the structure and operation of the Internet,
	basic knowledge of cryptography, operating systems, computer
	architecture, databases, web programming, client-server model,
	algorithm and programming

5. Conditions (if necessary)

5.1. for the course	Classroom equipped with video projector
5.2. for the seminar /lab	• None
activities	

6. Specif	ic competencies acquired
ies	Professional competencies
stenc	• Know and understand the main paradigms related to data protection: confidentiality, integrity
Professional competencies	and data availability;
ıal c	• Acquiring a solid theoretical foundation in communication through unsafe medium, as well as the use of secure communication protocols on the Internet;
sior	the use of secure communication protocols on the internet,
ofess	• Learning how the main forms of malware and the main forms of attacks on the Internet work, as
Pro	well as the methods of protection against them.
	Professional communication skills; concise and precise description, both oral and written, of
ies	professional results;
Transversal competencies	Ethic and fair behaviour, commitment to professional deontology;
dwo	Applying the norms of organized and efficient work, responsibility and reliability of the work
sal c	performed both individually and within a team;
sver	• Entrepreneurial skills; working with economical knowledge; continuous learning;
Tran	Good English communication skills.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	The course aims to deepen the student's knowledge of the best security
discipline	mechanisms that can be implemented and used on the Internet, both at the
	level of a computer system and at the level of the communication
	infrastructure.
7.2 Specific objective of the	The course brings together some advanced topics in the field of cyber
discipline	security. The course is structured around the TCP / IP architecture for
	organizing computer networks, the theoretical aspects being oriented towards
	each level and set of protocols within the TCP / IP stack. The course aims to:
	• present and familiarize the student with the most common encryption

algorithms as well as with the different protocols at various levels in the TCP / IP stack that implement these algorithms;

- a comprehensive presentation of the main aspects of cryptography applied on the Internet, in particular of public and private key cryptography;
- familiarize the student with the most serious vulnerabilities in the field, as well as with the mechanisms and measures to combat these vulnerabilities;
- present to students the main security challenges posed by e-commerce on the Internet;
- address from a legal and moral point of view various topics such as Internet crime and user privacy;
- contribute to the understanding of these fields by studying and developing relevant practical applications.

8. Content

8.1 Course	Teaching methods	Remarks
1. Presentation of the bibliography and the	Presentations,	
structure of the course. Requirements and	explanations,	
evaluation. Computer vulnerabilities. Policies	examples, case	
and aspects of IT security at different levels of	studies	
the TCP / IP stack.		
2. History of computer attacks. Malware	Presentations,	
(classification). Computer virology. The	explanations,	
anatomy of a computer virus. Antivirus	examples, case	
systems. Spyware and addware. Their	studies	
applications in e-commerce. Botnet networks.		
3. Computer vulnerabilities. Operating system	Presentations,	
security.	explanations,	
	examples, case	
	studies	
4. Internet server security. Enterprise network	Presentations,	
security architectures.	explanations,	
	examples, case	
	studies	
5. Local area network security. Firewall	Presentations,	
mechanism (host based, router based).	explanations,	
Network & host scanning. Types of scans.	examples, case	
	studies	
6. Local attacks and remote attacks. Escalation of	Presentations,	
privileges. Horizontal attacks. DDOS, flood.	explanations,	
	examples, case	
	studies	
7. Buffer overflow. Exploits' anatomy. Shellcode.	Presentations,	
	explanations,	
	examples, case	
	studies	
8. Web application security. SQL Injection.	Presentations,	
SMTP Injection. Cross Site Scripting. CSRF.	explanations,	
Unrestricted file upload.	examples, case	
	studies	
9. Encryption algorithms based on public and	Presentations,	

private keys. Digital signatures. Digital certificates.	explanations, examples, case studies
10. Public keys infrastructures and associated services.	Presentations, explanations, examples, case
11. E-mail security. DKIM. Antispam mechanism: bayesian spam filters, DNS based blacklists. PGP.	studies Presentations, explanations, examples, case studies
12. Network and transport security protocols. IPSec. SSL and TLS. VPN	Presentations, explanations, examples, case studies
13. Physical and data link layer security	Presentations, explanations, examples, case studies
14. Social Engineering related vulnerabilities. Cyber crime. Ensuring user privacy.	Presentations, explanations, examples, case studies

Bibliography

- 1. F. Cohen, A Short Course on Computer Viruses, Wiley Professional Computing, 2nd edition, 1994
- 2. Michael Sikorski, Andrew Honig, Practical Malware Analysis: The Hands-On Guide to Dissecting Malicious Software, No Starch Press, 2012
- 3. Peter Kim, The Hacker Playbook 2: Practical Guide To Penetration Testing, CreateSpace, 2015
- 4. Martin Boldt, Privacy-Invasive Software, cap. 2, cap. 7, Blekinge Institute of Technology, ISBN 978-91-7295-100-6
- 5. Michal Zalewski, Silence on the Wire: A Field Guide to Passive Reconnaissance and Indirect Attacks, No Starch Press, 2005
- 6. Michael Hale Ligh, Andrew Case, The Art of Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac Memory, John Wiley & Sons, 2014
- 7. Chris Sanders, Jason Smith, Applied Network Security Monitoring: Collection, Detection, and Analysis, Syngress, 2013
- 8. Shon Harris, Allen Harper, Gray Hat Hacking, Second Edition: The Ethical Hacker's Handbook, McGraw-Hill Osborne, 2008
- 9. Michal Zalewski, The Tangled Web: A Guide to Securing Modern Web Applications, No Starch Press, 2011
- 10. Michael A. Davis and Sean M. Bodmer, Hacking Exposed Malware and Rootkits: Malware and Rootkits Secrets and Solutions, McGraw-Hill Education, 2009
- 11. Michael Gregg, The Network Security Test Lab: A Step-by-Step Guide, John Wiley & Sons, 2015
- 12. William Stallings, Network Security Essentials: Applications and Standards, Pearson, 5th edition, 2013
- 13. Stuart Mcclure, Joel Scambray, Hacking Exposed 7: Network Security Secrets and Solutions, McGraw-Hill Education, 7th edition, 2012
- 14. William Stallings, Cryptography and Network Security: Principles and Practice, Pearson, 6th edition 2013
- 15. Gordon Fyodor Lyon, Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning, Nmap Project, 2009
- 16. Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security: Private Communication in a Public

World, Prentice Hall, 2002

- 17. Eric Cole, Ronald L. Krutz, James Conley, Brian Reisman, Mitch Ruebush, Dieter Gollmann, Rachelle Reese, Network Security Fundamentals, John Wiley & Sons, 2008
- 18. Michael J. Stewart, Network Security, Firewalls and VPNs, Jones & Bartlett Learning, 2nd edition, 2013
- 19. Timur Mehmet, Firewall Hacking Secrets For Security Professionals, HackerStorm, 2015
- 20. Oskar Andreasson, Iptables Tutorial, http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html
- 21. Dafydd Stuttard, Marcus Pinto, The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws, John Wiley & Sons, 2nd edition, 2011
- 22. Jon Erickson, Hacking: The Art of Exploitation, No Starch Press, 2nd edition, 2008
- 23. Vancea, Al. si altii, Programarea in limbaj de asamblare 80x86, Exemple si aplicatii, pag. 317-323, Ed. Risoprint, 2005
- 24. Klaus Schmeh, Cryptography and Public Key Infrastructure on the Internet, Wiley, 2007
- 25. Johannes A. Buchmann, Evangelos Karatsiolis, Introduction to Public Key Infrastructures, Springer, 2013
- 26. V. V. Patriciu, M. Ene-Pietrosanu, C. Vaduva, I. Bica, N. Voicu, Securitatea Comerțului Electronic, Editura ALL
- 27. V. V. Patriciu, M. Ene-Pietrosanu, I. Bica, J. Priescu, Semnături Electronice și Securitate Informatică, Editura ALL, 2006
- 28. Sharon Conheady, Social Engineering in IT Security: Tools, Tactics, and Techniques: Testing Tools, Tactics & Techniques, McGraw-Hill Education, 2014
- 29. Christopher Hadnagy, Paul Wilson, Social Engineering: The Art of Human Hacking, John Wiley & Sons, 2010

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Computer vulnerabilities. Computer virology.	Debate, dialogue,	The seminar takes place
The anatomy of a computer virus. Antivirus	examples,	every two weeks
systems.	conversations	
2. Exploits. Shell-code.	Debate, dialogue,	
	examples,	
	conversations	
3. Firewalls	Debate, dialogue,	
	examples,	
	conversations	
4. Web applications security	Debate, dialogue,	
	examples,	
	conversations	
5. Public key encryption algorithms. Digital	Debate, dialogue,	
signatures. Digital certificates.	examples,	
	conversations	
6. E-mail security	Debate, dialogue,	
	examples,	
	conversations	
7. Network and transport layers security	Debate, dialogue,	
protocols.	examples,	
	conversations	

Bibliography

- 1. Justin Pot: A History of Computer Viruses & The Worst Ones of Today;
- 2. Jeremy Paquette: A History of Viruses;
- 3. Moheeb Abu Rajab, Lucas Ballard, Panayiotis Mavrommatis, Niels Provos, Xin Zhao: <u>The Nocebo*</u> Effect on the Web: An Analysis of Fake Anti-Virus Distribution;

- 4. Martin Boldt: Privacy-Invasive Software, cap. 2, cap. 7;
- 5. Steve Hanna: Shellcoding for Linux and Windows Tutorial;
- 6. Writing shellcode;
- 7. Lisa Bogar: SUID, SGID;
- 8. Vivek Gite, Explain Linux / UNIX TCP Wrappers, 2009;
- 9. Port Scanning How a Port Scan Works;
- 10. James Messer: Secrets of Network Cartography: A Comprehensive Guide to nmap;
- 11. TCP Idle Scan;
- 12. V. V. Patriciu: <u>Semnaturi electronice si infrastructuri de securitate</u>, notițe de curs, 2009, Master Sisteme Distribuite în Internet, Univ. Babeș-Bolyai;
- 13. DomainKeys Identified Mail (DKIM);
- 14. OpenSSL: The Open Source toolkit for SSL/TLS, www.openssl.org;
- 15. Steve Friedl: An Illustrated Guide to IPsec.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

Courses with a similar content exist in the curriculum of all major universities in Romania and abroad.

- The course addresses fundamental security issues and especially current ones on the Internet.
- The content of the course covers the main aspects necessary to be mastered by the student in order to successfully occupy a suitable position within a profile company.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of the main theoretical aspects presented in the course	Partial examination of the first half of the curriculum	1/4
	Knowledge of the main theoretical aspects presented in the course	Final exam in the second half of the curriculum	1/4
10.5 Seminar/lab activities	Delivery of reports and projects on security topics chosen by mutual agreement of the student with the teacher (among those discussed at the course and/or seminar)	Oral presentation by the student	1/2

10.6 Minimum performance standards

The following two conditions must be met for the student to pass the course:

- semester-long activity (presentation of reports and projects), activity that must be noted at least with a grade of 5;
- minimum average 5 between the mark of the partial exam and the one obtained at the exam in the evaluation session.

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect. Dr. Bufnea Darius-Vasile	Lect. Dr. Bufnea Darius-Vasile
Date of approval	Signature of the head of department	