SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University
institution	Duxes Dolyar Chivershey
Institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Cyber Security
Qualification	

2. Information regarding the discipline

2.1 Name of the	e di	scipline	ipline Quality Aspects of Security in Software Testing				
2.2 Course coor	rdin	ator		Lecturer PhD Camelia Chisăliță-Crețu			
2.3 Seminar coo	ordi	nator		Lecturer PhD C	amelia C	hisăliță-Crețu	
2.4. Year of	1	2.5	2	2.6. Type of	С	2.7 Type of	Mandatory
study		Semester		evaluation		discipline	
2.8 Discipline							

MME8195 Code

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 lab + 1
				seminar/laboratory	project
3.4 Total hours in the curriculum	5	Of which: 3.5 course	28	3.6	28
	6			seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					10
Evaluations					14
Other activities:					-

3.7 Total individual study hours 94 3.8 Total hours per semester 150 3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum	OOP, Programming Fundamentals, Advanced Programming Methods
4.2. competencies	• Good programming skills in at least one of the programming languages Java, C#

5. Conditions (if necessary)

5.1. for the course	Course hall with projector
5.2. for the seminar /lab	• Laboratory: computers and use of a programming language
activities	environment

6. Specific competencies acquired

	• C3.2 Using interdisciplinary knowledge solution patterns and tools making experiments and
	interpreting their results
	= C22 A 1
Ducf	• C3.3 Applying solution patterns using specific engineering tools and menods
Proi	• C3.4 Comparatively and experimentally evaluation of the alternative solutions for
essio	performance optimization
nal	• C4.4 Managing the life cycle of hardware, software and communications systems based on
com	performance evaluation
pete	• C4.5 Developing, implementing and integrating software solutions
noios	• Proficient use of verification, validation, and evaluation criteria and methods in order to
ncles	ensure software security;
	• Demonstrate advanced skills to analysis, design, and construction of secure software systems,
	using a wide range of hardware / software platforms, programming languages and
	environments, and modeling, verification and validation tools;
Tran	• CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the
svers	professional reputation
al	• CT3 Demonstrating initiative and pro-active behavior for updating professional, economical
ai	and organizational culture knowledge
com	
pete	
ncies	

······································	(care of the and an early competence)
7.1 General objective of the	• Enhance the students understanding of testing and test design techniques.
discipline	• Provide the students with an environment in which they can explore the
	usage and usefulness of software testing and test design concepts in
	various business scenarios.
	• Induce a realistic and industry driven view of software testing concepts
	and their inherent benefits.
7.2 Specific objective of the	• Give students the ability to explore various test design techniques applied
discipline	to different levels of testing.
	• Improve the students' abilities to tackle on goal driven testing.
	• Enhance the students understanding of test design techniques value in
	business.
	• Students will be able to use various tools for the testing process (i.e., test
	management, test running, test reporting and bug reporting) to identify
	software vulnerabilities.
	• Students will be able to design test cases according to an established
	testing goal and using specific test design technique in order to investigate
	the software.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course	Teaching methods	Remarks
1. Software Testing. Test Design Techniques	Interactive exposure	
1.1. Software Testing. Goals. Scope	• Explanation. Conversation	
1.2. Test Design Technique. Attributes	Didactical demonstration	
1.3. Taxonomy of Test Design Techniques		
2. Coverage-based Techniques I	Interactive exposure	
2.1. Focus. Objectives	• Explanation. Conversation	
2.2. Tours. Logical Expressions	Didactical demonstration	
3. Coverage-based Techniques II	Interactive exposure	
3.1. Specification-based Testing;	• Explanation. Conversation	
3.2. Requirements-based Testing;	Didactical demonstration	

1 Disk based Techniques	• Internective and a sume	
4. Risk-based Techniques	• Interactive exposure	
4.1. Focus. Objectives	• Explanation. Conversation	
4.2. Quick-tests. History-based Testing.	• Didactical demonstration	
Usability Testing		
4.3. HISM. Failure modes	- · ·	
5. Activity-based Techniques	• Interactive exposure	
5.1. Focus. Objectives	• Explanation. Conversation	
5.2. Guerilla Testing. All-pairs Testing	 Didactical demonstration 	
5.3. Use Cases Testing. Scenario Testing		
Coverage-based Techniques vs Activity-based		
Techniques		
6. Evaluation-based Techniques	 Interactive exposure 	
6.1. Focus. Objectives	• Explanation	
6.2. Function Equivalence Testing. Self-	Conversation	
verifying data	Didactical demonstration	
7. Desired result-based Techniques	• Interactive exposure	
7.1. Focus. Objectives	• Explanation. Conversation	
7.2. Confirmation Testing. User Acceptance	Didactical demonstration	
Testing		
7.3. Desired-based Techniques vs Evaluation-		
based Techniques		
8. Tester-based Techniques	Interactive exposure	
8.1. Focus. Objectives	• Explanation. Conversation	
8.2. User Testing. Alpha Testing. Beta Testing	• Didactical demonstration	
8.3. Bug Bashes. Paired Testing.		
8.4. Coverage-based Techniques vs Tester-based		
Techniques		
9. Test Design Techniques Analysis	• Interactive exposure	
9.1. Tester-based Techniques vs Activity-based	• Explanation. Conversation	
Techniques	• Didactical demonstration	
9.2. Risk-based Techniques vs Coverage-based		
Techniques		
9.3. Desired result-based Techniques vs Risk-		
based Techniques		
10. Security Testing	• Interactive exposure	
10.1.Terminology	• Explanation. Conversation	
10.2.Types	• Didactical demonstration	
10.3.Advanced Techniques		
11. Bug Reporting	• Interactive exposure	
11.1.Challenges	• Conversation	
11.2.RIMGEA Strategy		
12. Project Presentations	• Interactive exposure	
	• Conversation	

Bibliography

[Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008.

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004. [Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Perry97] W.E.Perry, R.W. Rice, Surviving the Top Ten Challenges of Software Testing – A People Oriented Approach, Dorset House Publishing, 1997.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.
[Page08] A. Page, K. Johnston, B. Rollison, Microsoft, How We Test Software at Microsoft, 2008.
[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Laboratory 1	Presentation, Conversation,	
Testing Project Setup	Problematizations, Discovery, Other	
0 5 1	methods – individual study, exercises	
2. Laboratory 2	Presentation, Conversation,	
Coverage-based Techniques	Problematizations, Discovery, Other	
	methods – individual study, exercises	
3. Laboratory 3	Presentation, Conversation,	
Risk-based Techniques	Problematizations, Discovery, Other	
•	methods – individual study, exercises	
4. Laboratory 4	Presentation, Conversation,	
Test Automation Tools	Problematizations, Discovery, Other	
	methods – individual study, exercises	
5. Laboratory 5	Presentation, Conversation,	
Activity-based Techniques OR	Problematizations, Discovery, Other	
Desired result-based Techniques	methods – individual study, exercises	
6. Laboratory 6	Evaluation	
Project turn-in		

References:

[Pres10] R. S. Pressman, Software engineering: a practinioner's approach, seventh edition, Higher Education, 2010.

[Crs09] L. Crispin, J. Grecory, Agile testing: a practical guide for testers and agile teams, Addison-Wesley, 2009.

[You08] M. Pezzand, M. Young, Software Testing and Analysis: Process, Principles and Techniques, John Wiley & Sons, 2008.

[Nai08] K. Naik, P. Tripathy, Software testing and quality assurance. Theory and Practice, A John Wiley & Sons, Inc., 2008.

[Kat08] J. P. Katoen, Principles of Model Checking, MIT Press, May 2008.

[Pat05] R. Patton, Software Testing, Sams Publishing, 2005.

[Mye04] Glenford J. Myers, The Art of Software Testing, John Wiley & Sons, Inc., 2004.

[Brn02] I. Burnstein, Practical Software Testing, Springer, 2002.

[Kaner99] C. Kaner, J. Falk, H.Q. Nguyen, Testing Computer Software, Wiley, 1999.

[Perry97] W.E.Perry, R.W. Rice, Surviving theTop Ten Challenges of Software Testing – A People Oriented Approach, Dorset House Publishing, 1997.

[Kaner02] C. Kaner, J. Bach, B. Pettichord, Lesson Learned in Software Testing, Wiley, 2002.

[Page08] A. Page, K. Johnston, B. Rollison, Microsoft, How We Test Software at Microsoft, 2008.

[Whitt2012] J. Whittaker, J. Arbon J. Carollo, How Google Tests Software, Google, Pearson Education, 2012.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Students will know how to apply test design techniques for a software product, in a similar way they are used in industry.
- Students will be able to understand the differences between the goals and scope of the various test techniques applied to a software system.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)		
10.4 Course	Design and develop a testing solution (project) for a software product with focus on test design techniques. The corresponding grade is denoted by P .	Oral Examination	70%		
10.5 Seminar/laboratory activities	Each lab activity will be graded. The arithmetic average of the grades is denoted by L.	Laboratory Activity	30%		
Remark:					
• Laboratory assignments will be achieved in groups of 2-3 students.					

Laboratory assignments will pe achieved in groups of 2-3 stu
Testing project will pe achieved in groups of 4-5 students.

10.6 Minimum performance standards

- Students will be able to apply test design techniques according to established goals for a software system.
- Students will be able to unstandand the differences between software testing goal, scope, and test design technique concepts.
- The final grade (M) is computed as follows: M = 30%L+70%P.
- At least $M \ge 5.00$ is favourable to pass this course exam.

Date	Signature of course coordinator	Signature of seminar coordinator
17.05.2022	Lect. PhD. Camelia Chisăliță-Crețu,	Lect. PhD. Camelia Chisăliță-Crețu,

Date of approval

Signature of the head of department

Prof. PhD. Laura Dioșan