. Information regarding the programme			
1.1 Higher education	Babeș-Bolyai University		
institution			
1.2 Faculty	Mathematics and Computer Science		
1.3 Department	Computer Science		
1.4 Field of study	Computer Science		
1.5 Study cycle	Master		
1.6 Study programme /	Cyber Security		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline		Advanced Software Security					
2.2 Course coordinator		C	Conf. dr. Mihai SUCIU				
2.3 Seminar coordinator		C	Conf. dr. Mihai SUCIU				
2.4. Year of study 2 2.5 Semester		3	2.6. Type of evaluation	Ε	2.7 Type of	Mandator	
						discipline	У
2.8 Code of the discipline MME8199							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	0+1+1
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					5
Evaluations				9	
Other activities:				0	
3.7 Total individual study hours		94			•

5.7 Total mulvidual study nouis	24
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Computer System Architecture
	· Operating Systems
	· Data Structures and Algorithms
	· Data Bases
	· Web Programming
4.2. competencies	• Programming in C, basic knowledge of Intel x86 architecture,
	basic knowledge of web programming and SQL

5. Conditions (if necessary)

et conditions (if necessary)	
5.1. for the course	• course room with video projector
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Profes sional compe tencie s	 Demonstrate advanced skills to analysis, design, and construction of secure software systems, using a wide range of hardware / software platforms, programming languages and environments, and modeling, verification and validation tools; Acquiring a solid theoretical foundation in communication through unsafe medium, as well as the use of secure communication protocols on the Internet; Learning how the main forms of malware and the main forms of attacks on the Internet work, as well as the methods of protection against them.
Trans versal compe tencie s	 Good English communication skills; Professional communication skills; concise and precise description, both oral and written, of professional results; Ethic and fair behaviour, commitment to professional deontology.

7. Objectives of the discipline (outcome of the acquired competencies)

	c (outcome of the dequired competencies)	
7.1 General objective of the	Ability to evaluate the security features of a software application based on	
discipline	the source code. Acquiring the minimum basic skills of writing a source	
	code without vulnerability.	
7.2 Specific objective of the	• Knowledge of the basic mechanisms that define the security of the system	
discipline	and the software environment in which an application runs (i.e. the security	
	model), such as: access permissions, security policies, interaction with the	
	external environment, etc.	
	• Knowledge of the main types of software vulnerabilities, such as: use of	
	incorrectly validated user data, uncontrolled direct or indirect interaction	
	with the external environment of the application, etc.	
	• Learning effective techniques for studying and evaluating source code	
	from a security perspective and the ability to identify possible	
	vulnerabilities.	
	• Ability to assess the implications of a discovered vulnerability.	
	• Knowledge of techniques and function libraries useful in writing a source	
	code without vulnerabilities and the ability to use them in real situations.	

8. Content

8.1	Course	Teaching methods	Remarks
1	Concepts and basics related to software	Exposure:	
	vulnerabilities and methods and tools for developing software without vulnerabilities and evaluating software from the perspective of possible vulnerabilities	description, explanation, examples, debate	

2	Memory corruption vulnerabilities (buffer /		
	integer overflow, etc.)		
3	Vulnerabilities specific to the C language:		
	arithmetic limits (representation), type		
	conversions, pointers, etc.		
4	Vulnerabilities in the structural components of a		
	software application (Program building blocks)		
5	Vulnerabilities in the use and manipulation of		
	strings and metacharacters		
6	Vulnerabilities specific to UNIX operating		
	systems		
7	Vulnerabilities specific to Windows operating		
	systems		
8	Synchronization vulnerabilities		
9	Web vulnerabilities: SQL code injection, XSS,		
-	XSRF etc.		
10	Cryptography vulnerabilities: vulnerable		
10	passwords, predictable random numbers, etc.		
11	Methods for designing applications from a		
	security perspective: design principles, definition		
	of the risk model (threat modelling), design		
	evaluation, etc.		
12	Methods of correct implementation of a software		
12	application from a security perspective: methods		
	and models of application development		
	(Waterfall, agile), the most common and most		
	dangerous risks and vulnerabilities, defensive		
	coding techniques		
13	Methods for evaluating the application (code)		
15	from a security perspective: quality assurance,		
	testing, management of identified vulnerabilities		
14	Proactive approaches to security		
	iography	<u> </u>	
	. Down, J. McDonald, J. Schuh, ,, The Art of Softwar	re Security Assessment	Identifying and
	enting	e becanny hissessmenn.	Tuentiyying unu
	ware Vulnerabilities ", Addison Wesley, 2007		
0	. Howard, D. LeBlanc, J. Viega, "24 Deadly Sins of	Software Security Pro	gramming Flows and
	to Fix Them", McGraw Hill, 2010	Software Security. 110	granning 110w5 and
	. Howard, D. LeBlanc, , Writing Secure Code for W	indows Vista " Micros	oft Press 2007
	. McGraw, "Software Security:Building Security In?		
	Seacord, "CERT C Coding Standard: 98 Rules for I	•	
	ison Wesley, 2 nd edition, 2014	severeping sure, reenad	, and secure systems ,
	,, Common Weaknesses Enumeration (WCE)", on lin	e: http://cwe.mitre.org	/data/index.html
	Seminar / laboratory	Teaching methods	Remarks
	. Tools useful in identifying and assessing	Dialogue, debate,	
-	vulnerabilities in a source code: source code	examples, guided	
	browsers, debuggers, executable code browsers	discovery	
	(binary), fuzzy testing		
1	. Techniques for avoiding, detecting and		
2	assessing vulnerabilities in memory corruption		
	and specific to C language		
	una speeme to c runguage		

3.	Techniques for avoiding, detecting and assessing vulnerabilities in the use and management of strings and meta-characters	
4.	Techniques for avoiding, detecting and assessing vulnerabilities specific to the Linux operating system	
5.	Techniques for avoiding, detecting and assessing vulnerabilities in Windows operating systems	
6.	Penetration testing	
7.	Penetration testing	

Bibliography

1. M. Down, J. McDonald, J. Schuh, " The Art of Software Security Assessment. Identifying and Preventing

Software Vulnerabilities", Addison Wesley, 2007

2. M. Howard, D. LeBlanc, J. Viega, "24 Deadly Sins of Software Security. Programming Flows and How to Fix Them", McGraw Hill, 2010

3. M. Howard, D. LeBlanc, "*Writing Secure Code for Windows Vista*", Microsoft Press, 2007

4. G. McGraw, "Software Security: Building Security In", Addison Wesley, 2006

5. R. Seacord, "CERT C Coding Standard: 98 Rules for Developing Safe, Reliable, and Secure Systems", Addison Wesley, 2 nd edition, 2014

6. , " Common Weaknesses Enumeration (WCE)", on line: http://cwe.mitre.org/data/index.html

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

It is carried out through regular discussions with representatives of significant employers in the field of information security.

Courses on security issues in application development and related fields (e.g. penetration tests) are present in many other masters in the field of computer and information security, at universities in the country and abroad, such as:

· Security of software systems, Master of Information Security, Al. I. Cuza, Iași, Faculty of Computers, http://profs.info.uaic.ro/~webdata/planuri/master/MISS1FS03.pdf

· Security of systems and applications, Master of Information Technology Security, Military

Technical Academy, Bucharest, http://mta.ro/masterat/masterinfosec/curricula2013.html

· Secure Software Systems, Master of Science in Information Security, Carnegie Mellon

University, USA, http://www.ini.cmu.edu/degrees/msis/courses.html

· Software Security, Master in Information Security, Royal Holloway University of London,

Information Security Group,

https://www.royalholloway.ac.uk/isg/documents/pdf/coursespecs(msc)/modules201314/iy5607 softwarese curityspec1314.pdf

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Ability to define concepts specific to security issues at source code level and to set out the methods for correctly evaluating and developing a source code from a security perspective. • Ability to solve problems specific to the field. • Attendance, (inter) activity during class hours.	Written exam	60%
10.5 Seminar/lab activities	Ability to solve problems specific to the field • Presence, (inter) activity during laboratory / project hours.	Practical exam	40%
10.6 Minimum performat	nce standards tal software vulnerabilities, such	as: buffer overflow SOL code i	niection XSS etc

evaluation).

Date

Signature of course coordinator

Signature of seminar coordinator

20.05.2022

Conf. Dr. Mihai SUCIU

Conf. Dr. Mihai SUCIU

Date of approval

.....

Prof. PhD. Laura Dioşan

Signature of the head of department