SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)			Învățare profundă și tehnici de viziune computerizată /			
(ro)		Deep learning and Computer Vision				
2.2 Course coordina	tor	Lect. PhD. Diana Laura Borza				
2.3 Seminar coordinator			Lect. PhD. Diana Laura Borza			
2.4. Year of study 3	2.5 Semester	6	2.6. Type of	E	2.7 Type of	Compulsory
			evaluation		discipline	DS
2.8 Code of the	MLE5207					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 LP
				seminar/laboratory	
3.4 Total hours in the curriculum	48	Of which: 3.5 course	24	3.6	24
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					30
Additional documentation (in libraries, on electronic platforms, field documentation)					50
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					4
Evaluations					3
Other activities:					

3.7 Total individual study hours	127
3.8 Total hours per semester	175
3.9 Number of ECTS credits	7

4. Prerequisites (if necessary)

1 \	
4.1. curriculum	Linear Algebra
	Python programming
	• Statistics
	Data structures and algorithms
4.2. competencies	Average programming skills in a high-level programming
	language

5. Conditions (if necessary)

5.1. for the course	 Classroom with blackboard and video projector.
5.2. for the seminar /lab	 Laboratory equipped with high-performance computers and having
activities	python installed.

6. Specific competencies acquired

	C6.1 Describing the basic concepts for representation and characterization of signals and the
	basic concepts of artificial intelligence
Professional competencies	C6.2 Appropriate use of methods for signal analysis and fundamental artificial intelligence algorithms
onal cor	C6.3 Use of simulation and programming environments to process signals and model solutions to problem classes
Professi	C6.4 Quantitative and qualitative evaluation of the performance of intelligent systems
	C6.5 Incorporating signal processing methods and artificial intelligence-specific solutions into
	dedicated applications
	CT1 Ability to conform to the requirements of organized and efficient work, to develop a
	responsible approach towards the academic and scientific fields, in order to make the most of
Š	one's own creative potential, while obeying the rules and principles of professional ethic
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society and for communicating in Romanian and in a worldwide spoken language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	•	The goal of this course is to acquaint the students with the field of
discipline		computer vision from a deep learning perspective. The students will

	learn how to analyse, design, implement, and evaluate any complex computer vision problem. The course covers both image and video processing, including image classification, object detection, object tracking, action recognition, image stylization and synthetic data generation.
7.2 Specific objective of the discipline	 Understand various architectures of Convolutional Neural Networks for image classification, object detection, video analysis, and synthetic visual data generation. Solve and analyse a Computer Vision problem using a specific theoretical apparatus. Understand and develop efficient fine-tuning strategies for increasing the performance of Convolutional Neural Networks with applications in the Computer Vision field. Understand the metrics used to evaluate complex networks, as well as visualizing the features learned by the networks.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Computer Vision. Overview,	• Interactive exposure	
history of computer vision, the three Rs of	 Explanation 	
computer vision.	 Conversation 	
	• Didactical	
	demonstration	
2. Image classification pipeline. Image	• Interactive exposure	
classification pipeline, image features, filters,	 Explanation 	
convolutions, linear classifiers.	 Conversation 	
	• Didactical	
	demonstration	
3. Shallow neural networks. Optimization and	• Interactive exposure	
loss functions.	 Explanation 	
	 Conversation 	
	• Didactical	
	demonstration	
4. Introduction to convolutional neural	• Interactive exposure	
networks . Convolutional neural networks	 Explanation 	
architectures. Elements of a convolutional	 Conversation 	
convolutional neural network: convolutional	Didactical	
layers, pooling layers, fully connected layer).	demonstration	
Architectures: LeNet, AlexNet, VGG,		
Inception, Resnet.		
5. Training a neural network. Activation	• Interactive exposure	
functions, weight initialization, hyperparameter	• Explanation	
tuning, transfer learning.	• Conversation	
	Didactical	
	demonstration	
6. Case study: face analysis using convolutional	• Interactive exposure	
neural networks. Multitask networks, triplet	• Explanation	
loss function.	• Conversation	
	• Didactical	
	demonstration	

7 Image segmentation using convolutional	• Internative evene
7. Image segmentation using convolutional	• Interactive exposure
neural networks. Transposed convolutions,	• Explanation
Fully convolutional neural networks, U-Net	Conversation
architecture.	Didactical
	demonstration
8. Generative networks . PixelRNN and	Interactive exposure
PixelCNN, Variational Autoencoders (VAE),	Explanation
Generative Adversarial Networks (GAN).	Conversation
	Didactical
	demonstration
9. Object detection . Object detection, region	Interactive exposure
proposal, ROI pooling. Convolutional neural	• Explanation
networks for object detection: Fast R-CNN,	• Conversation
Faster R-CNN, Mask-RCNN, YOLO, SSD	Didactical
	demonstration
10. Graph convolutional neural networks.	Interactive exposure
· · · · · ·	• Explanation
	• Conversation
	• Didactical
	demonstration
11. Sequence models. Attention and	Interactive exposure
transformers.	• Explanation
VI WIISTOT III CT SV	• Conversation
	• Didactical
	demonstration
12. Vision transformers. Self-supervised	Interactive exposure
learning.	• Explanation
icai ning.	• Conversation
	• Didactical
	demonstration
13. Case studies and demonstrations of state-of-	• Interactive exposure
the-art algorithms. Ethics in artificial	• Explanation
intelligence. Debate.	• Conversation
micingence. Devate.	Didactical
	demonstration
14 Project procentation	
14. Project presentation	• Interactive
	exposure,
	conversation.
Diblicomoules	

Bibliography

- 1. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
- 2. Langr, Jakub, and Vladimir Bok. GANs in Action. (2018).
- 3. Trask, Andrew. *Grokking deep learning*. Manning Publications Co., 2019.
- 4. Prince, Simon JD. Computer vision: models, learning, and inference. Cambridge University Press, 2012.
- 6. Shapiro, Linda G., and George C. Stockman. Computer vision. Prentice Hall, 2001.
- 7. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists.* "O'Reilly Media, Inc.", 2016.
- 8. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.
- 8. https://pytorch.org/docs/stable/index.html
- 9. https://www.tensorflow.org/api docs

1 0 1 1	T	TP1 1 1
1. Strategies for solving computer vision	• Interactive exposure	The laboratory is
problems. Introduction to <i>python</i> and <i>keras</i> .	• Explanation	structured as 2 hours per
	• Conversation	week, every other week
	Individual and	
	group work	
	Dialogue, debate	
2. Convolutional neural networks (building	• Interactive exposure	
blocks, simple architectures). Evaluation	• Explanation	
metrics and visualization (Precision, Recall,	• Conversation	
TPR, FPS, F1-Score, confusion matrix,	Individual and	
activation maps).	group work	
• /	Dialogue, debate	
3. Optimization algorithms, unbalanced data, data	Interactive exposure	
pre-processing, data generators in <i>keras</i> .	• Explanation	
Convolutional neural networks for instance	• Conversation	
segmentation.	Individual and	
segmentation.	group work	
	• Dialogue, debate	
4. Laboratory assignment presentation. Project	• Interactive exposure	
phase 1.	• Explanation	
phase 1.	• Conversation	
	Individual and	
	group work	
	Dialogue, debate	
5 D : 4 1 2	• Interactive exposure	
5. Project phase 2	• Explanation	
	• Conversation	
	• Individual and	
	group work	
	Dialogue, debate	
6. Project phase 3. Project presentation	• Interactive exposure	
	• Explanation	
	• Conversation	
	Individual and	
	group work	
	Dialogue, debate	
	• Quiz	
7. Evaluation (written examination)		
D. I. i		
Project		
Phase 1	• Interactive exposure	
- each student should pick (or propose) a computer	• Explanation	
vision problem for the project	• Conversation	
- discussion about the chosen projects	Individual and	
- state of the art analysis (search for other methods that	group work	
solve the same problem)	Brainstorming	
- short presentation (by the teacher) of the possible		
computer vision project themes that could be solved		
using deep learning		
- presentation (by the teacher) of the methodology that		
needs to be followed for the project and of the		
available tools to achieve the project		
1 7	•	

Phase 2

- establishing the methodology that needs to be followed to solve the project
- data gathering, data pre-processing
- selection of the appropriate network architectures

Phase 3

- design and implementation of the project
- design and implementation of the project
- evaluation metrics implementation
- visualization
- implementation cont'd, evaluation, fine-tuning
- project delivery, presentation, demo

Bibliography

- 1. Müller, Andreas C., and Sarah Guido. *Introduction to machine learning with Python: a guide for data scientists*. "O'Reilly Media, Inc.", 2016.
- 2. Gulli, Antonio, and Sujit Pal. *Deep learning with Keras*. Packt Publishing Ltd, 2017.
- 3. Anderson, John. *Hands On Machine Learning with Python*. CreateSpace Independent Publishing Platform, 2018.
- 4. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. *Deep learning*. MIT press, 2016.
- 5. https://pytorch.org/docs/stable/index.html
- 6. https://www.tensorflow.org/api docs

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Computer Science majors.
- The course exists in the studying program of all major universities in Romania and abroad.
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 The student has a good understanding of the deep learning concepts. The ability to apply the course concepts in solving a real-life computer vision problem. 	Written examination at the laboratory in the last week of the semester.	40%
10.5 Seminar/lab activities	The correct specification, design, implementation and evaluation of a computer vision	Continuous observations Practical project	60% (30% laboratory assignments and 30% project)

problem based on			
deep learning.			
• The student is able to			
apply different			
techniques for			
improving the			
performance of a			
deep learning system.			
10.6 Minimum performance standards			
> Students must prove that they acquired an acceptable level of knowledge and understanding of the core			
concepts taught in the class, that they are capable of using this knowledge in a coherent form, that they have			
the ability to establish certain connections and to use the knowledge in solving various computer vision			
problems.			
The final grade (average between written exam and project) should be at least 5 (no rounding)			

Date Signature of course coordinator	Signature of seminar coordinator
--------------------------------------	----------------------------------

30.04.2023 Lect. PhD. Diana Laura Borza Lect. PhD. Diana Laura Borza

Date of approval Signature of the head of department

.....