SYLLABUS

1.1 Higher education	Babeş Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Artificial Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Automata Theory and Compilers				
(ro)							
2.2 Course coordinator				Prof.PhD. Simona Motogna			
2.3 Seminar coordinator			Prof.PhD. Simona Motogna				
2.4. Year of study	3	2.5 Semester	5	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsory
2.8 Code of the discipline		MLE5206		•	·		

3. Total estimated time (hours/semester of didactic activities)

et i etai estimatea time (nears, seme					
3.1 Hours per week	6	Of which: 3.2 course	2	3.3	2sem
				seminar/laboratory	+ 21ab
3.4 Total hours in the curriculum	84	Of which: 3.5 course	28	3.6	56
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				10	
Additional documentation (in libraries, on electronic platforms, field documentation)					5
Preparation for seminars/labs, homework, papers, portfolios and essays				10	
Tutorship				6	
Evaluations				10	
Other activities:				-	
3.7 Total individual study hours		41			4
0 0 F 11		107			

3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Fundamentals of Programming, Data Structures and Algorithms
-----------------	---

10	•
4.2.	competencies
	••••••••••••••••

• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	Course roo with projector
5.2. for the seminar /lab	Laboratory with computers
activities	

6. Specific competencies acquired

Professional competencies	 C4.1 Definition of concepts and basic principles of computer science, and their mathematical models and theories C4.2 Interpretation of mathematical and computer science models C4.3 Identify adequate models and methods to solve real life problems C4.5 Adoption of formal models in specific applications from different domains
Transversal competencies	CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accomodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Knowledge, understanding an duse of theoretical concepts used in compiler design Improved programming skills
7.2 Specific objective of the discipline	 Acquire knowledge about back-end of a compiler Improved programming skills: understang the underleying functioning of a compiler, program debugging, better compiling error reporting
	 Understading of formal langauges concepts and development of skills to model problems using formal languages; ability to apply compiler specific techniques to diverse real life problems

8. Content

8.1 Course	Teaching methods	Remarks
1. General Structure of a compiler. Introduction	Exposure: description,	
	explanation, examples	
2. Scanning (Lexical Analysis). Formal Languages	Exposure: description,	
	explanation, examples	
3. Grammars. Chomsky classification. Finite	Exposure: description,	
Automata	explanation, examples	
4. Regular languages. Sanner generators	Exposure: description,	
	explanation, examples	
5. Closure properties for regular languages	Exposure: description,	
	explanation, examples	
6. Context-free grammars	Exposure, explanation,	

	examples, discussion of	
	case studies	
7. Parser generators. Push Down Automata	Exposure: explanation,	
	examples, discussion of	
	case studies	
8. Attribute grammars	Exposure: description,	
	explanation, examples	
9. & 10 Parsing (Syntactical Analysis)	Exposure: description,	
	explanation, examples	
11. & 12 Syntax Tree. Intermediary Code	Exposure: description, examples	
13. & 14 Summarization of theoretical and practical	Exposure: description,	
aspects. Application in compiler design	explanation, examples,	
1 11 1 5	demo	
Bibliography		
1. A.V. AHO, D.J. ULLMAN - Principles of computer design, A	ddison-Wesley, 1978.	
2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translatio		N.J., 1972,
1973.		
3. D. GRIES - Compiler construction for digital computers,, Jo	ohn Wiley, New York, 1971.	
4. MOTOGNA, S. – Metode de proiectare a compilatoarelor,	Ed. Albastra, 2006	
5. SIPSER, M., Introduction to the theory of computation, PV		
6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméle	tébe, I, II., ELTE, Budapest, 1996	
7. L.D. SERBANATI - Limbaje de programare si compilatoare,	Ed. Academiei RSR, 1987.	
8.2 Seminar	Teaching methods Remarks	
1. Specification of a programming language; BNF	Explanation, dialogue,	
notation	case studies	
2. Finite automata: language generated by a FA; FA	Dialogue, debate, case	
corresponding to a language	studies, examples,	
	proof	
3. Finite automata: data structures for finite	Dialogue, debate, case	
automata	studies, examples	
4. Properties of regular languages. Proofs and	Dialogue, debate, case	
applications	studies, examples	
5. Grammars; language generated by a grammar;	Dialogue, debate, case	
grammar corresponding to a language	studies, examples,	
	proof	
6. LR(0), SRL parsing	Dialogue, debate, case	
	studies, examples	
7. LR(1) parsing	Dialogue, debate, case	
	studies, examples	
8. LALR parsing	Dialogue, debate, case	
	studies, examples	
9. Context free grammars. Push Down Automata	Dialogue, debate, case	
	studies, examples	
10. LL(1) parsing	Dialogue, debate, case	
	studies, examples	
11. Descendent recursive parser	Dialogue, debate, case	
	studies, examples	
12. & 13 Properties of context free grammars.	Dialogue, debate, case	
Proofs and applications	studies, examples	
	Diala ave dahata ang	
14. Summarization exercices (grammar of types 1,2, and 3)	Dialogue, debate, case studies, examples	

8.3 Laboratory	Teaching methods	Remarks
1. Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
1.1: Mini language specification (BNF notation)	case studies	
2. Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
1.2: implement main functions in scanning	case studies	
3. Task 1: Specify a mini-language and implement scanner	Explanation, dialogue,	
1.3: Symbol Table organization	case studies	
4. Task 1: Specify a mini-language and implement scanner	Testing data discussion,	
1.4: Main program, testing + delivery	evaluation	
5. Task 2: Finite Automata	Explanation, dialogue,	
2.1: Verify sequence acceptance DFA and NFA	case studies	
6. Task 2: Finite Automata	Testing data discussion,	
2.2: Adapt scanner to use FA to determine tokens	evaluation	
7. Task 3: Parser implementations	Explanation, dialogue,	One of: descendant
3.1: define data structures and architecture of application	case studies	recursive, LL(1), LR(0), SLR
3.2 implement main functions in parsing		
8. Task 3: Parser implementations	Testing data discussion,	Task 3 is developed in teams
3.3: main program and module integration	evaluation	of 2 students
9. Task 3: Parser implementations	Explanation, dialogue,	
3.4: testing and error handling	case studies	
10. Task 3: Parser implementations	Explanation, dialogue,	
3.5: delivery	case studies	
11. Task 4: use tools for lexer generator: lex,	Explanation, dialogue,	
	case studies	
12. Task 5: use tools for parser generator: yacc	Testing data discussion,	
	evaluation	
13. Task 6: use tools for lexer and parser generator	Testing data discussion,	
6.1 Combine the 2 tools and re-run tasks 3 and 4	evaluation	
15. Task 6: use tools for lexer and parser generator:	Explanation, dialogue,	
6.2 Testing and delivery	case studies	
Bibliography		

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. MOTOGNA, S. – Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-Napoca, 1996.

5. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.

6. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the
			grade (%)

10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	60%	
10.5 Seminar and lab	- be able to apply algorithms,	problems solved - homeworks	10%	
activities	understand examples -	delivered - continuous		
	problem solving	observations during semester		
	- be able to implement	-Practical examination during	30%	
	course concepts and	all semester -documentation -		
	algorithms	portofolio -continous		
	- apply techniques for	observations		
	different classes of			
	programming languages			
10.6 Minimum performance standards				
Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester				
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.				

Date	Signature of course coordinator	Signature of seminar coordinator
25.04.2023	Prof.PhD. Simona MOTOGNA	Prof.PhD. Simona MOTOGNA

Date of approval

Signature of the head of department

.....

Prof.dr. Laura Dioșan