SYLLABUS

8 8 8	
1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Artificial Intelligence

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipli	1 Name of the discipline (en) Knowledge based			ms			
(ro)							
2.2 Course coordinator			Prof. PhD. Andreica Anca				
2.3 Seminar coordinator		Prof. PhD. Andreica Anca					
2.4. Year of study 3	2.5 Semester	5	2.6. Type of	Е	2.7 Type of	Compulsory	
			evaluation		discipline		
2.8 Code of theMLE5201							
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course suppor	t, bił	oliography, course notes	8		15
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					25
Tutorship					6
Evaluations					2
Other activities:					-
3.7 Total individual study hours 58					
3.8 Total hours per semester		100			
3.9 Number of ECTS credits		4			

4. Prerequisites (if necessary)

4.1. curriculum	•	• Algorithms, data structures, statistics	
4.2. competencies	•	Average programming skills	

5. Conditions (if necessary)

5.1. for the course	• Projector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

Professional competencies	 CE1.1 Description of artificial intelligence concepts and research directions CE1.2 Evaluation of the quality and stability of the obtained solutions and their comparison with the solutions obtained by traditional methods CE1.3 Using artificial intelligence methods, techniques and algorithms to model solutions to classes of problems
Transversal competencies	 CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	To introduce the student in Knowledge-based systems (KBS)
7.2 Specific objective of the discipline	This course is aimed to advance both theoretical and practical aspects of KBS. The course aims to provide an overview of the discipline and its main areas. At the end of the course, students will understand the basic principles of KBS and associated algorithmic approaches and have knowledge of KBS applications.

8. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to KBS	• Interactive	

2.	KBS	exposure
	a. Components	Presentation
	b. Knowledge representation	• Explanation
	 Formal logic 	Practical
	 Rules 	examples
	 Semantic networks 	• Case-study
	c. Inference process	discussions
	 Techniques – certainty 	discussions
	a. Logic	
	b. Rule-based	
	 Techniques – uncertainty 	
	a. Probabilities	
	b. Fuzzy	
3.	Logic-based KBS	
4.	KBS – certainty	
	a. Design	
	b. Architecture	
	 Knowledge base 	
	 Inference 	
	a. Forward	
	b. Backward	
~	c. Conflicts	
5.	KBS – uncertainty	
	a. Architecture	
	 Knowledge base Informac 	
	 Interence Pavas 	
	a. Dayes b. Certainty theory	
	o. Euzzy logic stages	
	• Fuzzification	
	• Rules	
	\circ Fuzzy inference	
	\circ Aggregation	
	\circ Defuzzification	
	• Results	
6.	Strengths and weaknesses of KBS	
7.	Real-world KBSs	
D 11 11		

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 4. H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004
- 5. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 6. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, 1995

8.2 Seminar / laboratory	Teaching methods	Remarks
L1: Eficient solutions for algorithmic problems	 Interactive 	
L2-L3: Design and implementation of KBS – certainty	exposure	

 Explanation Conversation Didactical demonstration

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 4. G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, 1995

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)			
10.1 Course	Knowledge of the basic concepts of the field Applying the intelligent principles from the course content to solve complex and difficult problems	Written exam	50%			
10.2 Seminar/lab activities	 Specification, design, implementation and testing of intelligent methods Effective problem solving with the help of previously implemented methods 	Systematic observation of the student while solving the task Practical projects	50%			
10.3 Minimum performance standards						
- Each student has to demonstrate that he has reached an acceptable level of knowledge and						
understanding of the field, that he is able to express the knowledge in a coherent form, that he has the						

- ability to establish certain connections and to use the knowledge in solving some problems.
- To pass the exam you must:
- at least 60% of the laboratory assignments are completed
- an evaluation average (written exam, seminar, laboratory) to be above 5

DateSignature of course coordinatorSignature of seminar coordinator.....Prof. PhD. Andreica AncaProf. PhD. Andreica Anca

Date of approval

.....

Signature of the head of department Prof. PhD. Dioşan Laura