
 

 

SYLLABUS 

1. Information regarding the programme 

1.1 Higher education 

institution  

Babeş-Bolyai University 

1.2 Faculty Faculty of Mathematics and Computer Science 

1.3 Department Department of Computer Science 

1.4 Field of study Computer science 

1.5 Study cycle Bachelor 

1.6 Study programme / 

Qualification  

Artificial Intelligence 

 

2. Information regarding the discipline  

2.1 Name of the discipline (en) 

(ro) 

Parallel and Distributed Programming 

Programare Paralelă și Distribuită 

2.2 Course coordinator  Lect. PhD. Radu Lupșa 

2.3 Seminar coordinator Lect. PhD. Radu Lupșa 

2.4. Year of study 3 2.5 Semester 5 2.6. Type of evaluation E 2.7 Type of discipline Compu

lsory 

2.8 Code of the 

discipline 

MLE5077  

 

3. Total estimated time (hours/semester of didactic activities)  

3.1 Hours per week  4 Of which: 3.2 course 2 3.3 

seminar/laboratory 

2 

3.4 Total hours in the curriculum  56 Of which: 3.5 course 28 3.6 

seminar/laboratory 

28 

Time allotment: hours 

Learning using manual, course support, bibliography, course notes 15 

Additional documentation (in libraries, on electronic platforms, field documentation)  15 

Preparation for seminars/labs, homework, papers, portfolios and essays 28 

Tutorship 5 

Evaluations 6 

Other activities: ..................  

3.7 Total individual study hours  69  

3.8 Total hours per semester 125 

3.9 Number of ECTS credits 5 

 

4. Prerequisites (if necessary) 

4.1. curriculum � Object Oriented Programming, 

� Data Structures and Algorithms, 



 

 

� Operating Systems 

4.2. competencies � Programming abilities 

 

5. Conditions (if necessary) 

5.1. for the course � Lecture room with videoprojector 

5.2.  for the seminar /lab 

activities 

� Laboratory with workstations 

 

6. Specific competencies acquired  

P
ro

fe
ss

io
n

a
l 

co
m

p
et

en
ci

es

 

C3.1 Identificarea unor clase de probleme şi metode de rezolvare caracteristice sistemelor informatice  

  

C3.2 Utilizarea de cunoştințe interdisciplinare, a tiparelor de soluții şi a uneltelor, efectuarea de 

experimente şi interpretarea rezultatelor lor 

 

C4.2 Explicarea rolului, interacțiunii şi funcționării componentelor sistemelor software  

  

  

C4.5 Dezvoltarea şi implementarea şi integrarea soluțiilor software  

 

T
ra

n
sv

er
sa

l 
co

m
p

et
en

ci
es

 

 

CT1 Honorable, responsible, ethical behavior, in the spirit of the law, to ensure the professional 

reputation  

 

CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and 

organizational culture knowledge  

 

 

7. Objectives of the discipline (outcome of the acquired competencies) 

7.1 General objective of the 

discipline 

 

� Aquire the main concepts of concurrent, parallel and distributed 

programming; 

� Basics of communication between processes and threads, on the same 

machine or on distinct machines; 

� Knowing basic techniques of parallel programming; 

� Knowing and using parallel application design patterns 



 

 

� Knowing and using the existing frameworks for developing parallel 

and distributed applications 

7.2 Specific objective of the 

discipline 

 

� Parallel architectures and parallel programming systems 

� Know how to use parallel programming techniques in problem solving 

� Know how to evaluate the performance increase obtained by 

parallelization 

� Ability to work independent or in a team in order to solve problems in 

a parallel and/or distributed context 

 

8. Content 

8.1 Course Teaching methods Remarks 

1. General introduction: necessity to use 

parallelism; concurrent vs. parallel vs. 

distributed computing; levels of 

parallelism 

Exposition, concepts, 

examples, case study. 

 

2. Parallel architectures: Pipeline; 

Vectorial machines; Grid and cluster 

computers; Supercomputers 

Exposition, concepts, 

examples, case study. 

 

3. Processes vs threads; Managing the 

processes/threads 

Exposition, concepts, 

examples, case study. 

 

4. Concurrency concepts: race conditions, 

critical sections, mutual exclusion, 

deadlock; synchronizations: monitors, 

semaphores 

Exposition, concepts, 

examples, case study. 

 

5. Models of parallelism: Implicit vs. 

explicit parallelism; data parallelism; 

message-passing; shared memory 

Exposition, concepts, 

examples, case study. 

 

6. Parallel programming in shared 

memory: C pthreads, C++ threads, Java 

threads, OpenMP 

Exposition, concepts, 

examples, case study. 

 

7. Performance evaluation for parallel 

programs: 

PRAM (Parallel Random Access 

Machine). 

Efficiency, cost, scalability. 

Exposition, concepts, 

examples, case study. 

 

8. Parallel programming patterns: 

master-slaves; task farm / work pool; 

divide et impera; pipeline 

Exposition, concepts, 

examples, case study. 

 

9. Message passing parallel programs. 

MPI  

Exposition, concepts, 

examples, case study. 

 

10. Phases in a parallel program: PCAM 

(Partition, Communication, 

Aggregation, Mapping): task 

decomposition; domain (geometrical) 

Exposition, concepts, 

examples, case study. 

 



 

 

decomposition; granularity; degree of 

parallelism; task dependency 

11. Parallel programs construction 

techniques: divide et impera; binary 

tree; recursive double-back 

Exposition, concepts, 

examples, case study. 

 

12. Data parallel programming Exposition, concepts, 

examples, case study. 

 

13. GPGPU (General Processing on the 

Graphical Processing Unit): OpenCL, 

CUDA 

Exposition, concepts, 

examples, case study. 

 

14. Distributed file systems Exposition, concepts, 

examples, case study. 

 

Bibliography 

http://www.cs.ubbcluj.ro/~rlupsa/edu/pdp/ 

1. Ian Foster. Designing and Building Parallel Programs, Addison-Wesley 1995. 

2. Michael McCool, Arch Robinson, James Reinders, Structured Parallel Programming: Patterns for 

Efficient Computation,” Morgan Kaufmann,, 2012 . 

3. Berna L. Massingill, Timothy G. Mattson, and Beverly A. Sanders,Addison A Pattern Language for 

Parallel Programming. Wesley Software Patterns Series, 2004. 

4. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing, Addison Wesley, 2003. 

5. D. Grigoras. Calculul Paralel. De la sisteme la programarea aplicatiilor. Computer Libris Agora, 2000. 

6. V. Niculescu. Calcul Paralel. Proiectare si dezvoltare formala a programelor paralele. Presa Univ. 

Clujana, 2006. 

7. D.B. Skillicorn, D. Talia. Models and Languages for Parallel Computation. ACM Computer Surveys, 

30(2) pg.123-136, June 1998. 

8. B. Wilkinson, M. Allen, Parallel Programming Techniques and Applications Using Networked 

Workstations and Parallel Computers, Prentice Hall, 2002 

9. E.F. Van de Velde. Concurrent Scientific Computing. Spring-Verlag, New-York Inc. 1994. 

10. Boian F.M. Ferdean C.M., Boian R.F., Dragos R.C. Programare concurenta pe platforme Unix, 

Windows, Java. Ed. Albastra, grupul Microinformatica, Cluj, 2002 . 

11. OpenMP docs: https://www.openmp.org/ 

12. MPI docs: https://docs.open-mpi.org/ 

13. CUDA docs: https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 

14. OpenCL docs: https://www.khronos.org/opencl/ 

8.2 Seminar / laboratory Teaching methods Remarks 

L1 Threads vs processes   

L2-L5 Concurrent programming C++, Java, C#   

L6-L7 OpenMP   

L8-L10 MPI   

L11-L14 CUDA/OpenCL   

Bibliography 

1. Eckel, B., Thinking in Java, 4th Edition, New York: Prentice Hall, 2006. 

2. Larman, C.: Applying UML and Design Patterns: An Introduction to OO Analysis and Design, Berlin: 

Prentice Hall, 2004. 



 

 

3. Fowler, M., Patterns of Enterprise Application Architecture, Addison-Wesley, 2002. 

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns – Elements of Reusable Object Oriented 

Software, Ed. Addison Wesley, 1994. 

5. Walls, Craig, Spring in Action, Third Edition, Ed. O’Reilley, 2011. 

6. Kent Beck, Test Driven Development: By Example, Ed. Addison-Wesley Professional, 2002. 

7. ***, http://download.oracle.com/javase/tutorial/ 

8. ***, http://msdn.microsoft.com/en-us/library/aa288436%28v=vs.71%29.aspx 

 

9. Corroborating the content of the discipline with the expectations of the epistemic community, 

professional associations and representative employers within the field of the program 

 

� The course follows ACM and IEEE recommendations for computer science studies 

� The course is part of the curricula in all major universities, both local and abroad 

� The software companies consider the course content important for acquiring advanced programming 

abilities. 

 

 

10. Evaluation 

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the 

grade (%) 

10.4 Course Knowing basic concepts  written exam 40% 

Applying theoretical 

knowledge in problem 

solving 

project 30% 

10.5 Seminar/lab activities Applying theoretical 

knowledge in problem 

solving 

evaluation of lab 

assignments 

30% 

   

10.6 Minimum performance standards 

� At least 4.5 out of 10 for the written exam 

� At least 4.5 out of 10 for the average 

 

 

Date    Signature of course coordinator  Signature of seminar coordinator 

..........................  .........................................  ............................................ 

 

Date of approval         Signature of the head of department  

...........................................     Prof. dr. Laura Dioşan  


