SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Artificial Intelligence

2. Information regarding the discipline

2.1 Name of the o	liscipli	ine (en)	Fundamentals of Machine Learning				
(ro)							
2.2 Course coordinator Prof. PhD. Dioşan Laura							
2.3 Seminar coordinator		Prof. PhD. Dioșan Laura					
2.4. Year of study	2	2.5 Semester	4	2.6. Type of	E	2.7 Type of	Compulsory
			evaluation discipline				
2.8 Code of the		MLE5228					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	21ab
				seminar/laboratory	
3.4 Total hours in the curriculum	1 hours in the curriculum 70 Of which: 3.5 course 28 3.6		28		
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					29
Preparation for seminars/labs, homework, papers, portfolios and essays					30
Tutorship					7
Evaluations					3
Other activities:					-
0 = m		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Algorithms, data structures, statistics
4.2. competencies	Average programming skills

5. Conditions (if necessary)

5.1. for the course	Projector
5.2. for the seminar /lab	Computers, specific development environment
activities	

6. Specific competencies acquired

- Specifi	t competences acquired
Professional competencies	CE1.1 Description of artificial intelligence concepts and research directions CE1.2 Evaluation of the quality and stability of the obtained solutions and their comparison with the solutions obtained by traditional methods CE1.3 Using artificial intelligence methods, techniques and algorithms to model solutions to classes of problems
Transversal competencies	CT1. Application of efficient work rules and responsible attitudes towards the scientific domain, for the creative exploitation of one's own potential according to the principles and rules of professional ethics CT3. Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Emphasis the proper machine learning methods and techniques for solving real-world problems
7.2 Specific objective of the discipline	This course is aimed to advance both theoretical and practical aspects of Machine Learning. The course aims to provide an overview of the discipline and its main areas. At the end of the course, students will understand the basic principles of machine learning and associated algorithmic approaches and have knowledge of machine learning applications.

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Machine Learning	 Interactive 	

- 2. Intelligent systems Machine Learning (computational intelligence)
 - a. Problem formalisation
 - Regression problems
 - Supervised classification problems
 - Unsupervised classification problems
 - b. Supervised learning
 - Performance measures
 - Algorithms
 - a. Least Mean Square Root
 - b. Descent Gradient
 - c. Logistic regression
 - d. Artificial neural networks
 - e. Convolutional Neural Networks
 - f. K-nearest neighbour
 - g. Decision trees
 - h. Support Vector Machines
 - i. Bayesian models
 - j. Evolutionary algorithms
 - c. Unsupervised learning
 - Performance measures
 - Algorithms
 - d. Reinforcement learning
 - Performance measures
 - Algorithms
 - a. Q-learning
 - b. Neural Networks
- 3. Hybrid systems
- 4. Real-world intelligent systems
- 5. information processing that were collected in different domains (medical, biological, financial, psychology, etc) and represented in different modalities:
 - a. Texts
 - b. Images
 - c. Sounds
 - d. Networks / graphs

- exposure
- Presentation
- Explanation
- Practical examples
- Case-study discussions

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- 6. James Kennedy, Russel Eberhart, Particle Swarm Optimisation, Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948, 1995
- 7. Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 27
- 8. H.F. Pop, G. Serban, Inteligentă artificială, Cluj Napoca, 2004
- 9. D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- 10. C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- 11. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016

https://www.deeplearningbook.org/		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Eficient solutions for algorithmic problems	 Interactive 	
2. Introduction to Machine Learning – performance	exposure	
measures	 Explanation 	
3. Regression problems – Least Mean Square Root	 Conversation 	
4. Data normalisation	• Didactical	
5. Regression problems – descent gradient	demonstration	
6. Classification problems – logistic regression		
7. Regression problems – Artificial Neural Networks		
8. Classification problems – Artificial Neural Networks		
9. Regression problems – Evolutionary Algorithms		
10. Classification problems – Evolutionary Algorithms		
11. Clustering		
12. Real-world problems – ML-based solutions		
13. Development of applications that include intelligent		
components		

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001 A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, https://github.com/ageron/handson-ml

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the curriculum of many universities in the world.
- The results of course are considered by software companies particularly useful and topical, developing needed abilities in modelling and visualization of data.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Knowledge of the basic concepts of the field Applying the intelligent principles from the course content to solve complex and difficult problems	Written exam	50%
10.5 Seminar/lab activities	· Specification, design, implementation and testing of intelligent methods · Effective problem	Systematic observation of the student while solving the task Practical projects	50%

solving with the help of previously implemented methods	

10.6 Minimum performance standards

- Each student has to demonstrate that he has reached an acceptable level of knowledge and understanding of the field, that he is able to express the knowledge in a coherent form, that he has the ability to establish certain connections and to use the knowledge in solving some problems.
- To pass the exam you must:
- at least 60% of the laboratory assignments are completed
- an evaluation average (written exam, seminar, laboratory) to be above 5

Date	Signature of course coordinator	r Signature of seminar coordinator
	Prof. PhD. Dioșan Laura	Prof. PhD. Dioșan Laura
Date of approval	Si	ignature of the head of department
	Pı	rof. PhD. Diosan Laura