1.1 Higher education	Babes-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Undergraduate
1.6 Study programme /	Artificial Intelligence
Qualification	Artificial intelligence

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)			Metaheuristics					
(ro)	ro)			Metaeuristici				
2.2 Course coordinator			Pre	Prof. dr. Camelia Chira				
2.3 Seminar coordinator			Pr	Prof. dr. Camelia Chira				
2.4. Year of study	2	2.5 Semester	4	2.6. Type of evaluation	Е	2.7 Type of discipline	Compulsory	
2.8 Code of the discipline		MLE5205						

3. Total estimated time (hours/semester of didactic activities)

		· · · · · · · · · · · · · · · · · · ·			
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2 lab
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course supp	ort, bił	oliography, course notes	S		20
Additional documentation (in libraries, on electronic platforms, field documentation)					30
Preparation for seminars/labs, homework, papers, portfolios and essays					28
Tutorship					6
Evaluations					10
Other activities:					
3.7 Total individual study hours 94					
3.8 Total hours per semester	150				
3.9 Number of ECTS credits 6					

4. Prerequisites (if necessary)

4.1. curriculum	•	Algorithms, data structures, statistics
4.2. competencies	•	Average programming skills in a high-level object-oriented
	programming language	

5. Conditions (if necessary)

5.1. for the course	- Projector
5.2. for the seminar /lab	- For lab activity, computers with a high processing speed are needed.
activities	

6. Specific competencies acquired

I S	CE 1.1 Description of concepts and research directions in artificial intelligence
fessiona	CE 1.2 Evaluation of solution quality and stability, and comparisons with solutions obtained using traditional methods
Pro com	CE 1.3 Use of methods, techniques and algorithms from artificial intelligence to model solutions to classes of problems
Transversal competencies	TC1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, underlying the individual potential and respecting professional and ethical principles. TC3 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge exploitation, for adapting to the needs of a dynamic society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Metaheuristics aims to study specialized algorithms in solving complex problems
7.2 Specific objective of the discipline	• The course focuses on theoretical and practical aspects of metaheuristics and aims to provide an overview of the field and major types of metaheuristics. At the end of the course, students will be able to understand the basic principles that guide the development of metaheuristics and the associated algorithmic approaches, and will have knowledge of their applications.

8. Content

8.1 Cou	ırse	Teaching methods	Remarks
1. Intro	oduction to metaheuristics	• Interactive exposure	
		 Conversation 	
		• Examples	
2. Con	nplex problems and modelling real problems.	 Interactive exposure 	
Clas	ssical models vs metaheuristics in solving	 Conversation 	
com	nplex problems	• Examples	
3. Rep	presentation, evaluation, neighborhood. Local	• Interactive exposure	
sear	ch methods, hill-climbing algorithms	 Explanation 	
		 Conversation 	
		• Examples	

 Single-point methods in solving complex problems – Tabu Search, Simulated Annealing 	 Interactive exposure Explanation Conversation Examples
 Population-based methods in solving complex problems 	 Interactive exposure Explanation Conversation Examples
6. Evolutionary computing in solving optimization and search problems	 Interactive exposure Explanation Conversation Examples
 Design of evolutionary algorithms: binary representation, real representation, vectors, permutations 	 Interactive exposure Explanation Conversation Examples
8. Swarm intelligence models	 Interactive exposure Explanation Conversation Examples
9. State-of-the-art models	 Interactive exposure Explanation Conversation Examples
10. Computing models and hybrid systems	 Interactive exposure Explanation Conversation Examples
11. Hybrid models and examples of real-world applications	 Interactive exposure Explanation Conversation Examples
1214. Applications of metaheuristics	 Interactive exposure Explanation Conversation Examples

Bibliography

- 1. S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- 2. C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- 3. M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 4. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- 5. Marco Dorigo, Christian Blum, Ant colony optimization theory: A survey, Theoretical Computer Science 344 (2005) 243 27
- 6. H.F. Pop, G. Şerban, Inteligență artificială, Cluj Napoca, 2004
- 7. A. E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Springer, 2003.
- 8. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
- 9. K. A. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA, 2006.
- 10. Z. Michalewicz, D. B. Fogel, How to solve it: Modern Heuristics, 2nd edition, Springer, 2004.

8.2 Seminar / laboratory	Teaching methods	Remarks		
L1-L2. Solving search problems using standard	Explanation			
methods and local search methods	 Conversation 			
	 Individual study 			
L3-L4. Solving search and optimization problems	 Study case 			
using single-point methods	 Brainstorming 			
L5-L6 Solving search and optimization problems	• Simulation			
using evolutionary algorithms	• Exercise			
5 , 5				
L7-L8. Solving problems using swarm intelligence				
algorithms				
IQI10 Extension and hybridization of heuristic				
algorithms				
angorramito				
L11-L13. Interpretation and analysis of results for				
heuristic algorithms in solving complex problems				
Bibliography				
1. Z. Michalewicz, D. B. Fogel, How to solve it: Modern Heuristics, 2nd edition. Springer, 2004				

- Z. Michalewicz, D. B. Foger, How to solve it. Modern Heuristics, 2nd edition, Springer, 2
 S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- S. Russen, T. Norvig, Artificial intelligence: A Modern Approach, Frence Han, 19
 C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, 1998
- 5. A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the studying program of all major universities in Romania and abroad.
- The content of the course is considered by the software companies as important for developing the modelling and programming skills of students.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Know the basic concepts of the domain Apply the intelligent principles from the course to solve complex and difficult problems	Written exam	50%
10.5 Seminar/lab activities	Specification, design, implementation and testing of intelligent methods Solving effectively problems using the implemented methods	Sistematic evaluation of the student in solving tasks Evaluation of lab assignments	50%

10. Evaluation

10.6 Minimum performance standards

- Each student must demonstrate an acceptable level of knowledge and understanding of the domain, the ability to present knowledge in a coherent manner and the ability to establish connections and use this knowledge to solve problems.
- > To pass the exam it is required to:
 - At least 2 lab assignments must be presented
 - The average grade (of the written exam and lab) must be minimum 5

Date	Signature of course coordinator	Signature of seminar coordinator
26.04.2023	Prof. univ. dr. Camelia Chira	Prof. univ. dr. Camelia Chira

Date of approval

.....

Signature of the head of department

Prof. dr. Laura Dioşan