SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University of Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor of Science
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the d	1 Name of the discipline (en)			Introduction to Big Data			
(ro)							
2.2 Course coordinator			Lect. Dr. Ioana-Georgiana Ciuciu				
2.3 Seminar coord	coordinator Lect. Dr. Ioana-Georgiana Ciuciu			uciu			
2.4. Year of study	2	2.5 Semester			Compulsory		
				evaluation		discipline	
2.8 Code of the		MLE5203					
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					24
Additional documentation (in libraries, on electronic platforms, field documentation)					24
Preparation for seminars/labs, homework, papers, portfolios and essays					32
Tutorship					6
Evaluations					8
Other activities:					-
2.7.5 . 1 . 1 . 1 . 1 . 1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	Basic knowledge of data analytics, preferably

•	Basic knowledge of data visualization, preferably
•	Programming skills

5. Conditions (if necessary)

5.1. for the course	Room with video projector	
5.2. for the seminar /lab	Room with computers as needed;	
activities	Big Data software installed	
	High level programming language environment	

6. Specif	ic competencies acquired					
•	Knowledge and understanding					
	Understanding the specificities of Big Data					
	• Knowing the main Big Data sources and the main methods to store and process these data					
	Understanding the role of Big Data analysis in various domains					
ies	Explanation and interpretation					
etenc	Explaining decisions using complex models based on Big Data					
Professional competencies	Interpreting the results of the Big Data analysis					
onal (Instrumental - applicative					
ofessi	Using non-traditional databases for the storage and processing of large volumes of data					
Pre	Advanced querrying over distributed information resources					
	Evaluation, testing and validation with real-world data					
	Attitude					
	Manifesting an open attitude towards the contributions of Big Data and the underlying technologies in a multitude of domains					
	Methods and algorithms for data processing and analysis applied to Big Data					
es _	Multidisciplinary competencies spanning various application sectors (e.g., life sciences and bioinformatics, telco, media, finance, security, health, energy, etc.)					
Transversal competencies	Data Science competencies, combining data analyst and data engineer- specific competencies (e.g., competencies from the fields of mathematics, statistics, information science, computer science, databases, machine learning, data mining, visualization, etc.)					

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Handling (extremely) large amounts of digital data in various formats (text, video, financial, medical, etc.)
7.2 Specific objective of the discipline	 Enable the use of novel algorithms, software infrastructures and methodologies for the purpose of processing (store, retrieve, analyze) large amounts of data
	 Provide decision support over large volumes of data
	 Enable the creation of applications and services for various business
	domains based on the results of big data analysis.

8. Content 8.1 Course

8.1 Course	Teaching methods	Remarks
Introduction to Data Science and Big Data – part I	Exposure, description, explanation, examples, case studies	Data Science main concepts, the Data Science Process, examples, case studies
Introduction to Data Science and Big Data – part II	Exposure, description, explanation, examples, case studies	Data types, data sources, data availability, main Big Data concepts, Big Data emerging technologies, case study examples
3. Industrial Standards for Data Mining Projects	Exposure, description, explanation, examples, case studies	Methodology for Data Science projects (CRISP-DM)
4. Big Data Architecture - part I	Exposure, description, explanation, examples, case studies	Traditional database systems versus Big Data systems
5. Big Data architecture – part II	Exposure, description, explanation, examples, case studies	The Lambda Architecture - a model for building a Big Data system, case studies and examples
6. Batch processing (Batch Layer) – part I	Exposure, description, explanation, examples, case studies	Big Data storage, data model for Big Data, batch computing, the Hadoop
7. Batch processing (Batch Layer) - part II	Exposure, description, explanation, examples, case studies	Ecosystem, Batch processing, technologies
8. Speed processing (Speed Layer) - part I	Exposure, description, explanation, examples, case studies	Computing and storing of real time views, real time updates, tools
9. Speed processing (Speed Layer) - part II	Exposure, description, explanation, examples, case studies	
10. Data Ingestion	Exposure, description, explanation, examples, case studies	Definitions and design considerations, batch ingestion, real time ingestion, tools

11. NoSQL Solutions for Big Data	Exposure, description, explanation, examples, case studies	NoSQL databases, NoSQL Data Models Tutorial provided
12. Data Visualization	Exposure, description, explanation, examples, case studies	Scientific data visualization principles, examples, technologies
13. Big Data Case Studies	Exposure, description, explanation, examples, case studies	Presentation of Big Data real- world case studies
14. Big Data Research Essays Presentation	Exposure, description, explanation, examples, case studies	Student essay presentation

Bibliography

Marz, N., & Warren, J. (2015). *Big Data. Principles and Best Practices of scalable real-time systems*. Manning Publications

Cielen, D., Meysman, A.D.B., & Ali, M. (2016). *Introducing Data Science. Big Data, machine learning, and more, using Python tools*. Manning Publications

Grus, J. (2019). Data Science from Scratch: First Principles with Python. O'Reilly Media, Inc.

Damji, J.S., Wenig, B., Das, T., & Lee, D. (2020). Learning Spark. O'Reilly Media, Inc.

Sadalage, P., Fowler, M. (2013). *NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence*. Pearson Education, Inc.

Agneeswaran, V. (2014). Big Data Analytics Beyond Hadoop. Pearson Education

White, T. (2009). *Hadoop: The Definitive Guide*. O'Reilly

McCallum, Q. E. (2012). Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work. O'Reilly

8.2 Seminar / laboratory	Teaching methods	Remarks
Seminar	Solving Big Data	The seminar takes place every
	processing related	two weeks and takes two
	problems	hours
1. Introduction in Data Science and Big	• Knowledge synthesis	Illustration of the main
Data	• Conceptual	concepts of Data Science
	clarification	Examples and exercises
	Group activities	related to the Data Science
	• Practical activities	process and applied to various
		domains
		Approaching the challenges
		related to data in various
		domains using Big Data

		Exercises aimed at practicing the work with various data types
2. Big Data Architecture	 Group activities Guided discovery Practical activities	Modeling a Big Data system based on the Lambda Architecture
3. Batch storage and processing of data	 Group activities Practical activities	Realizing batch storage and processing operations The seminar is organised as a tutorial
4. Real-time storage and processing of data	 Group activities Practical activities	Realizing real-time storage and processing operations The seminar is organised as a tutorial
5. Data ingestion	• Group activities • Practical activities	Exemplifying data ingestion The seminar is organised as a tutorial
6. NoSQL databases	 Group activities Practical activities	Working with NoSQL databases The seminar is organised as a tutorial
7. Data visualization	 Group activities Practical activities	Basic data visualization operations The seminar is organised as a tutorial
Laboratory		
The laboratory will be organized as a semester project with groups of about 2-3 students (depending on the requirements and the equipment needed)	Research-informed Learning Tutorial-based	The laboratory takes place every two weeks and takes two hours
Team work will be autonomous (focus on creativity and critical thinking)	• Problem-solving approach	Groups will be monitored via a project wiki managed with the course/lab the responsible
Technical tutorials will be provided to support student work around the most important aspects of Big Data storage and processing (e.g., Hadoop shell, PySpark, Data Ingestion with Apache Sqoop, NoSQL, etc.)	Team workBig Data solutions for concrete problems and case studies	

Bibliography

- 1. http://mahout.apache.org/
- 2. http://www.tutorialspoint.com/mahout/mahout_introduction.htm
- 3. http://spark.apache.org/documentation.html
- 4. http://shark.cs.berkeley.edu/
- 5. http://spark.apache.org/
- 6. http://nosql-database.org/
- 7. https://www.mongodb.com/nosql-explained

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Synergies with various local and EU initiatives: local industry, national institutions, European Data Science Academy (EDSA, https://edsa-project.eu/), EU projects such as Big Data for Next Generation Energy (BD4NRG, https://www.bd4nrg.eu/), LETHE (https://cordis.europa.eu/project/id/101017405), FARE (https://cordis.europa.eu/project/id/853566), the Human Brain Project (https://www.humanbrainproject.eu/en/), SoBigData (http://project.sobigdata.eu/), etc.
- Collaboration with the IT industry: invited lectures with real-life use cases, semester project topics, equipment (e.g., smart sensors).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 to be familiar with the main concepts of the domain to be able to model a problem from a specific application field relying on emergent Big Data technologies to be able to apply these principles in real-life use cases 	Evaluation of a research essay	50%
10.5 Seminar/lab activities	 to be able to propose viable creative solutions to real-life big data challenges from various application domains to be able to consume (query, analyze)Big Data in order to derive information relevant to use cases from various application domains to demonstrate critical thinking to successfully perform 	Semester project	50%

individual and team-based tasks	

10.6 Minimum performance standards

- A minimum grade of 5 (on a scale from 1 to 10) is necessary for the final grade (average between the
- research essay and the semester project)
 The lab attendance is compulsory at a rate of 90%, according to the decision of the Computer Science Department Council (http://www.cs.ubbcluj.ro/wp-content/uploads/Hotarare-CDI-15.03.2017.pdf)

Date	Signature of course coordinator	Signature of seminar coordinator
25 April 2023	Lect. Dr. Ioana-Georgiana Ciuciu	Lect. Dr. Ioana-Georgiana Ciuciu
Date of approval	Signature of the head of department	
	Prof	Dr. Laura Diosan