SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence (Inteligență artificială)
Qualification	

2. Information regarding the discipline

2.1 Name of th	e di	iscipline	Ma	athematical Statistics			
2.2 Course coo	ordii	nator		Prof. Sanda Micula, PhD. Habil.			
2.3 Seminar coordinator Prof. Sanda Micula, PhD. Habil.							
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	DF Compulsory
study		Semester		evaluation		discipline	
2.8 Course Code MLE5202							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem +
				seminar/laboratory	1 lab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					12
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					7
Evaluations					10
Other activities:					-

3.7 Total individual study hours	69
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	Probability Theory
	Mathematical Analysis
4.2. competencies	Logical thinking
	 Average logical programming skills in Matlab

5. Conditions (if necessary)

5.1. for the course	 Lecture room with large blackboard and video projector
---------------------	--

5.2. for the seminar /lab	For seminar: room with large blackboard
activities	 For lab: Laboratory with Matlab installed

6. Specific competencies acquired

	, ,
Professional competencies	C1.1 Identifying basic concepts, describing theory and using specific language C3.2 Interpretation of data and explaining the appropriate steps for solving problems by algorithms
Transversal competencies	CT3 Using efficient methods and techniques for learning, information, research and developing capabilities for using knowledge, for adapting to a dynamic society

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Acquire basic knowledge of Mathematical Statistics, with main focus on applications
7.2 Specific objective of the discipline	 Become familiar and be able to work with various statistical models and procedures Ability to perform statistical analysis of data
	Ability to use statistical features of various mathematical software

8. Content

8. Content		
8.1 Course	Teaching methods	Remarks
Review of Probability Theory. Probability space. Rules of probability. Conditional probability. Probabilistic models. Random variables and random vectors.	 Interactive exposure Explanation Conversation Didactical demonstration 	
2. Common discrete and continuous distributions. PDF and CDF. Examples, applications, properties.	 Interactive exposure Explanation Conversation Didactical demonstration 	
3. Descriptive Statistics. Data collection. Graphical display of data. Frequency distribution and histograms. Parameters of a statistical distribution. Measures of central tendency. Measures of variation.	 Interactive exposure Explanation Conversation Didactical demonstration 	
Correlation and regression. Correlation coefficient. Least squares estimation. Linear regression.	 Interactive exposure Explanation Conversation Didactical demonstration 	
5. Sample Theory. Samples. Sample functions: sample mean, sample variance, sample moments, sample distribution	Interactive exposureExplanationConversation	

l l
Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration
 Interactive exposure Explanation Conversation Didactical demonstration

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.
- 4. Blaga, P., Calculul probabilitatilor si statistica matematica. Vol. II. Curs si culegere de probleme, Universitatea "Babes-Bolyai" Cluj-Napoca, 1994.
- 5. Feller, W., An introduction to probability theory and its applications, Vol. 1, 3rd edition, WSE Wiley, New York, 2008.

6. DeGroot, M. H., Schervish, M. J., Probability	and Statistics, Addison-Wesley, B	oston, 2012.
8.2 Seminar	Teaching methods	Remarks
 Euler's Functions. Properties. Computation of moments of continuous random variables. Rules of probability, random variables. Applications. 	Interactive exposureExplanationConversation	The seminar is structured as 2 hours per week, every other week
Descriptive Statistics. Measures of central tendency and measures of variation. Correlation and regression. Correlation coefficient, lines of regression.	Interactive exposureExplanationConversationIndividual/group work	
3. Sample functions. Properties. Unbiased, consistent and minimum variance estimators.	Interactive exposureExplanationConversationIndividual/group work	
4. Fisher's information. Absolutely correct and efficient estimators.	Interactive exposureExplanationConversationIndividual/group work	
5. Sufficient and complete statistics. Lehmann- Scheffé Theorem. Minimum variance unbiased estimators.	 Interactive exposure Explanation Conversation Individual/group work 	
6. Method of moments. Method of maximum likelihood.	 Interactive exposure Explanation Conversation Individual/group work 	
7. Hypothesis and significance testing. Determining the sample size. Most powerful tests.	Interactive exposureConversationSynthesisIndividual/group work	
8.3 Laboratory	Teaching methods	Remarks
Review of Matlab features. Statistics and machine learning toolbox.	 Interactive exposure Explanation Conversation Individual/group work 	The lab is structured as 2 hours per week, every other week
2. Random number generators. Simulations of random variables. Samples, statistical measures.	 Interactive exposure Explanation Conversation Individual/group work 	
3. Descriptive Statistics. Histograms, frequency polygons, boxplots.	 Interactive exposure Explanation Conversation Individual/group work 	
4. Correlation and regression. Best fit of data.	 Interactive exposure Synthesis Conversation Individual/group work 	
5. Confidence intervals for means, variances and proportions.	Interactive exposureExplanationConversation	_

	Individual/group work
6. Confidence intervals for comparing two	Interactive exposure
populations. Hypothesis and significance	• Explanation
testing for the parameters of one population.	• Conversation
	Individual/group work
7. Hypothesis and significance testing for	Interactive exposure
comparing two populations and for paired	• Explanation
data.	 Conversation
	Individual/group work

Bibliography

- 1. Micula, S., Probability and Statistics for Computational Sciences, Cluj University Press, 2009.
- 2. Baron, M., Probability and Statistics for Computer Scientists, 3rd edition, CRC Press, Taylor and Francis, Boca Raton, FL, 2019.
- 3. Blaga, P., Statistica prin Matlab, Presa Universitara Clujeana, Cluj-Napoca, 2002.
- 4. Lisei, H., Micula, S., Soos, A., Probability Theory trough Problems and Applications, Cluj University Press, 2006.
- 5. Milton, J.S., Arnold, J. C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 3rd Edition. McGraw-Hill, New York, 1995.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course follows the ACM and IEEE Curriculum Recommendations for Artificial Intelligence majors;
- The course exists in the studying program of many universities from abroad;
- The statistical analysis abilities acquired in this course are useful in any career path students may choose.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 acquire the basic principles in Mathematical Statistics; be able to apply correctly the course concepts on various applications 	Written exam	70%
10.5 Seminar/Lab activities	 apply course concepts and techniques on practical problems choose and apply the appropriate statistical procedure to various practical problems implement course concepts and algorithms in Matlab to solve numerical statistical problems in Matlab 	- participation in discussing and solving problems in seminar and lab throughout the semester - solving numerical statistical applications - additional documentation - individual presentation of solutions	30%

Date Signature of course coordinator Signature of seminar coordinator
25.04.2023 Prof. Sanda Micula, PhD. Habil. Prof. Sanda Micula, PhD. Habil.

Date of approval Signature of the head of department

A grade of 5 or above (on a scale from 1 to 10) on each of the activities mentioned above (written test,

seminar/lab evaluation)