SYLLABUS

<u>1. Information regarding the progra</u>mme

in mormation regarang the programme				
1.1 Higher education institution	Babeş Bolyai University			
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme / Qualification	Artificial Intelligence			

2. Information regarding the discipline

2.1 Name of the discipline			Functional and Log	gic P	rogramming		
2.2 Course coordinator				Prof.Dr. Horia F. P	ор		
2.3 Seminar coordinator			Prof.Dr. Horia F. Pop				
2.4. Year of	2	2.5	3	2.6. Type of	С	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

2.8 Code of the discipline MLE5201

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28
Time allotment:					
Learning using manual, course support, bibliography, course notes 1					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					10
Evaluations					16
Other activities:				-	
3.7 Total individual study hours		69			

20T (11)	
3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

I ()/		
4.1. curriculum	• Fundamentals of Programming	
	 Mathematical Foundations of Computer Science 	
4.2. competencies	• Average programming skills in a high level programming language	

5. Conditions (if necessary)

5.1. for the course	 Students will attend the course with their mobile phones shut down Students will attend the course with their laptops shut down; students with special needs will discuss these at the beginning of the semester
5.2. for the seminar /lab activities	 Students will attend the lab with their mobile phones shut down Laboratory with computers; high level declarative programming language environment (CLisp, SWIProlog)

6. Specific competencies acquired

es all	C1.1 Adequate description of programming paradigms and specific language mechanisms, as
ona icid	well as identification of differences between semantic and syntactic aspects.
ssic	C1.3 Elaboration of adequate source codes and unitary testing of some components in a known
ofes	programming language, based on given design specifications.
Professional competencies	C1.5 Development of program units and elaboration of corresponding documentations.
C]	

		CT1 Application of efficient and organized work rules, of responsible attitudes towards the
=.	les	didactic-scientific domain, to creatively value one's own potential, with the respect towards the
I.S8	nc	principles and norms of professional etic.
sve ete	ete	CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities
Transversal competencies		to value the knowledge, to adapt to requirements of a dynamic society and to communicate in
L	100	Romanian language and in a language of international circulation.

7. Objectives of the discipline (outcome of the acquired competencies)

• Get accustomed with basic notions, concepts, theories and models of new programming paradigms (functional and logic programming)
 Get accustomed with a programming language for each of these paradigms (Common Lisp and Turbo Prolog) Acquire the idea of using these programming paradigms based on the applications' necessities Assure the necessary base for approaching certain advanced courses Ability to apply declarative programming techniques to different real life problems Ability to model phenomena using declarative techniques Improved programming abilities using the declarative paradigm

8. Content

	Course	Teaching methods	Remarks
	Basic elements of Prolog. Facts and rules in Prolog. Goals. The control strategy in Prolog. Variables and composed propositions. Anonymous variables. Rules for matching. The flow model. Sections of a Prolog program. Examples	Exposure: description, explanation, examples, discussion of case studies	
2.	The Prolog program. Predefined domains. Internal and external goals. Multiple arity predicates. The IF symbol (Prolog) and the IF instruction (other languages). Compiler directives. Arithmetic expressions and comparisons. Input/output operations. Strings	Exposure: description, explanation, examples, discussion of case studies	
3.	Backtracking. The backtracking control. The "fail" and "!"(cut) predicates. Using the "!" predicate. Type of cuts. The "not" predicate. Lists in Prolog. Recursion. Examples for backtracking in Prolog. Finding all solutions in the same time. Examples of predicates in Prolog. Non-deterministic predicates	Exposure: description, explanation, examples, discussion of case studies	
4.	Composed objects and functors. Unifying composed objects. Arguments of multiple types; heterogeneous lists. Comparisons for composed objects. Backtracking with cycles. Examples of recursive procedures. The stack frame. Optimization using the "tail recursion". Using the "cut" predicate in order to keep the "tail recursion".	Exposure: description, explanation, examples, discussion of case studies	
5.	Recursive data structures. Trees as data structures. Creating and traversing a tree. Search trees. The internal database of Prolog. The "database" section. Declaration of the internal	Exposure: description, explanation, examples, discussion of case studies	

	database. Predicates concerning operations with		
-	the internal database.	Expagura description	
	Advanced issues of Backtracking in Prolog. Files management in Prolog.	Exposure: description, explanation, examples,	
1	management in Froidg.	proofs, debate, dialogue	
7.	Programming and programming languages.	Exposure: description,	
	Imperative programming vs. declarative	explanation, examples,	
	programming. Introduction. The importance of	discussion of case studies	
1	the functional programming as a new		
]	programming methodology. History and		
	presentation of LISP		
	Basic elements in Lisp. Dynamic data structures.	Exposure: description,	
	Syntactic and semantic rules. Functions'	explanation, examples,	
	classification in Lisp. Primitive functions in	discussion of case studies	
	Lisp. Basic predicates in Lisp.		
	Predicates for lists; for numbers. Logic and	Exposure: description, explanation, examples,	
	arithmetic functions. Defining user functions. The conditional form. The collecting variable	discussion of case studies	
	method. Examples	discussion of case studies	
	Symbols' managing. Other functions for lists'	Exposure: description,	
	accessing. OBLIST and ALIST. Destructive	explanation, examples,	
	functions. Comparisons. Other interesting	discussion of case studies	
	functions. Examples		
11.	Definitional mechanisms. The EVAL form.	Exposure: description,	
	Functional forms; the functions FUNCALL and	explanation, examples,	
	APPLY. LAMBDA expressions, LABEL	discussion of case studies	
	expressions. Generators, functional arguments.		
	MAP functions. Iterative forms. Examples		
	Other elements in Lisp. Data structures. Macro-	Exposure: description,	
•	definitions. Optional arguments. Examples	explanation, examples, discussion of case studies	
13 -	14. Graded paper in Logic and Functional	Written test	
	Programming	Whiteh test	
	liography		
	CZIBULA G., POP H.F., Elemente avansate de pr	ogramare in Lisp si Prolog.	Aplicatii in Inteligenta
	Artificiala, Editura Albastra, Cluj-Napoca, 2012		
	POP H.F., SERBAN G., Programare in Inteligenta	1 Artificiala - Lisp si Prolog,	Editura Albastra,
	ClujNapoca, 2003		
	http://www.ifcomputer.com/PrologCourse, Lectur	e on Prolog	
	http://www.lpa.co.uk, Logic Programming	alay Navy Vark 1099	
	FIELD A., Functional Programming, Addison We WINSTON P.H., Lisp, Addison Wesley, New Yor	•	
	Seminar	Teaching methods	Remarks
	Recursion		
51.		ExplanationConversation	
		ConversationModelling	
		ModellingCase studies	
\$2	Lists in Prolog	E 1	
52.	Lists in 1 1010g	ExplanationConversation	
		Modelling	
		ModellingCase studies	
\$3	Processing of heterogeneous lists in Prolog	Explanation	
55.	recessing of neterogeneous lists in riolog	Conversation	

	Modelling
	Case studies
S4. Backtracking in Prolog	Explanation
	Conversation
	Modelling
	Case studies
S5. Lists processing in LISP	Explanation
	Conversation
	• Modelling
	Case studies
S6. MAP functions in LISP	Explanation
	Conversation
	• Modelling
	Case studies
S7. Recap	Explanation
	Conversation
	• Modelling
	Case studies

Bibliography

- 1. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012
- 2. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp.
- 3. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog.
- 4. http://www.swi-prolog.org

4. http://www.swi-prolog.org		
8.3 Laboratory	Teaching methods	Remarks
Lab 1: Recursive algorithms in Pseudocode	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 1 and submitted at lab 1
Lab 2: Lists in Prolog	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 1 and submitted at lab 2
Lab 3: Trees in Prolog. Lists management in Prolog.	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 2 and submitted at lab 3
Lab 4: Backtracking in Prolog	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 3 and submitted at lab 4
Lab 4: Practical test in Prolog	Practical test	One hour
Lab 5: Recursive programming in Lisp	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 4 and submitted at lab 5
Lab 6: Recursive programming in Lisp	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 5 and submitted at lab 6
Lab 7: Using MAP functions in Lisp.	Explanation, dialogue, testing data discussion, case studies	Problem given at lab 6 and submitted at lab 7
Lab 7: Practical test in Lisp	Practical test	One hour
Bibliography		

- 7. CZIBULA G., POP H.F., Elemente avansate de programare in Lisp si Prolog. Aplicatii in Inteligenta Artificiala, Editura Albastra, Cluj-Napoca, 2012
- 8. Product documentation: Gold Common Lisp 1.01 si 4.30, XLisp, Free Lisp.

- 9. Product documentation: Turbo Prolog 2.0, Logic Explorer, Sicstus Prolog.
- 10. http://www.swi-prolog.org

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is concordant with partial competencies for possible occupations from the Grid 1 RNCIS.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written test in Logic and Functional Programming	60%
10.5 Seminar activities	- activity at seminaries	Evaluation of seminaries activity	BONUS 5%
10.6 Lab activities- be able to implement course concepts and algorithms - apply techniques for different classes of programming languages	Programs documentation and delivery	10%	
	- apply techniques for different classes of	Practical test in Prolog (one hour at lab 4)	15%
10.7 Minimum porformon		Practical test in Lisp (one hour at lab 7)	15%

10.7 Minimum performance standards

Each student has to prove that (s)he acquired an acceptable level of knowledge and understanding of the subject, that (s)he is capable of stating these knowledge in a coherent form, that (s)he has the ability to establish certain connections and to use the knowledge in solving different problems.

In order to pass the course, the following minimal criteria apply collectively: at least grade 5 (from a scale of 1 to 10) at the written test; at least grade 5 (from a scale of 1 to 10) computed as final grade average, attendance of at least 5 seminars and at least 6 labs as scheduled during the semester.

Date	Signature of course coordinator	Signature of seminar coordinator
22.04.2023	Prof. Dr. Horia F. POP	Prof. Dr. Horia F. POP
Date of appr	oval	Signature of the head of department

.....

Prof. Dr. Laura Dioșan