syllabus

· · · · · · · · · · · · · · · · · · ·				
1.1 Higher education	Babeş-Bolyai University			
institution				
1.2 Faculty	Faculty of Mathematics and Computer Science			
1.3 Department	Department of Computer Science			
1.4 Field of study	Computer Science			
1.5 Study cycle	Bachelor			
1.6 Study programme /	Artificial Intelligence			
Qualification				

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		Computer Systems Architecture					
(ro)		Aı	Arhitectura Sistemelor de Calcul				
2.2 Course coordinato	r	PhD. Lecturer Coroiu Adriana Mihaela					
2.3 Seminar coordinator			PhD. Lecturer Coroiu Adriana Mihaela				
2.4. Year of study 2	2.5 Semester	3	2.6. Type of evaluation	E	2.7 Type of discipline	Compulsor y DF	
2.8 Code of the discipline	MLE 5004						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	0 S
				seminar/laboratory	2 LP
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				16	
Additional documentation (in libraries, on electronic platforms, field documentation)				15	
Preparation for seminars/labs, homework, papers, portfolios and essays				21	
Tutorship				14	
Evaluations				3	
Other activities:					
3.7 Total individual study hours		69			
3.8 Total hours per semester		125			

5

4. Prerequisites (if necessary)

3.9 Number of ECTS credits

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	· Video projector
5.2. for the seminar /lab	· Laboratory with computers/notebooks
activities	

6. Specific competencies acquired

	competencies well un eu
Profe	C1.1 Recognizing and describing specific concepts to calculability, complexity, programming paradigms and
ssion	modeling of computing and communication systems
	C1.2 Using specific theories and tools (algorithms, schemes, models, protocols, etc.) for explaining the structure and
al	the functioning of hardware, software and communication systems
comp	
etenc	C2.1 Describing the structure and operation of hardware, software and communication components
	C2.2 Explaining the role, interaction and operation of hardware, software and communication components
ies	
Tran	CT1 Honourable, responsible, ethical behavior, in the spirit of the law, to ensure the professional reputation
svers	CT3 Demonstrating initiative and pro-active behavior for updating professional, economical and organizational
_	culture knowledge
al	
comp	
etenc	
ies	
105	

7. Objectives of the discipline (outcome of the acquired competencies)

. Objectives of the discipline (bucome of the dequired competencies)			
7.1 General objective of the	Knowledge of the computer architecture models, processor		
discipline	functioning, computer information representation usage		
-			
7.2 Specific objective of the	- Understanding by the students of the computer architecture models, processor		
discipline	functioning, computer information representation usage		
	- Initiation in assembler language programming, which will assure the		
	comprehension of the microprocessor architecture and functioning		
	- Understanding the impact of the 80x86 processor architecture on Windows		
	functioning and limitations. Awareness of the triade computer architecture –		
	operating systems – programming languages and their interactions as the		
	basic core of Computer Science.		

8. Content

8.1 Course	Teaching methods	Remarks
1. Data Representation – Part 1	Exposure, description	
	and conversations.	
2. Data Representation – Part 2	Exposure, description	
	and conversations.	
3. Computing systems architecture and The	Exposure, description	
80x86 microprocessor's architecture. The	and conversations.	
Bus Interface Unit (BIU) of the 80x86		
microprocessor		

4. Assembly language basic elements	Exposure, description
4. Assembly language basic cicilients	and conversations.
5. Specific instructions for Assembly language	Exposure, description
	and conversations.
6. Unsigned Conversions. Specific operations for	Exposure, description
unsigned numbers.	and conversations.
7. Signed Conversions. Specific operations for	Exposure, description
signed numbers.	and conversations.
8. The 80x86 microprocessor's Eflags register	Exposure, description
	and conversations.
9. Directives for defining segments, data	Exposure, description
definition directives.	and conversations.
10. Overflow concept analysis	Exposure, description
	and conversations.
11. Special instructions for strings in Assembly.	Exposure, description
	and conversations.
12. Windows Input/Output Function Calls (printf	Exposure, description
and scanf) and Text files (fopen, fread, fscanf,	and conversations.
fprintf, fclose) processing operations	
13. Multi-module programming in assembly	Exposure, description
• • • • •	and conversations.
language	
14. Review of theoretical aspects and additional	Description and
problems: integration of the concepts already	conversations.
presented	L
Bibliography	

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. PC Assembly Language. Github: (http://pacman128.github.io/static/pcasm-book.pdf)

9. Cavanagh, J., 2013. X86 Assembly Language and C Fundamentals. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer's manual. *Volume 3B: System programming Guide, Part, 2*, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)

11. Bartlett, Jonathan. "Nasm (Intel) Assembly Language Syntax." In *Learn to Program with Assembly: Foundational Learning for New Programmers*, pp. 271-273. Berkeley, CA: Apress, 2021.

12. Zhirkov, Igor, and Igor Zhirkov. "Assembly Language." *Low-Level Programming: C, Assembly, and Program Execution on Intel*® 64 Architecture, pp 17-38, 2017

8.2 Seminar / laboratory	Teaching methods	Remarks
S1/L1 Conversions between base numbers. Bit. Sign	Debate, discovery	
bit. Assembly structure in nasm.	and problem solving	

S2/L2 Arithmetic expressions and operations for unsigned numbers	Debate, discovery and problem solving
S3/L3 Arithmetic expressions and operations for signed numbers	Debate, discovery and problem solving
S4/L4 Bitwise operations in assembly	Debate, discovery and problem solving
S5/L5 Strings in assembly. Decisional and loops intrctions in asm.	Debate, discovery and problem solving
S6/L6 Reading and writing (from keyboard, on the screen, from/in file)	Debate, discovery and problem solving
S7/L7 Multi-module programming in asm.	Debate, discovery and problem solving

Bibliography

1. Al. Vancea, F. Boian, D. Bufnea, A. Andreica, A. Darabant, A. Navroschi – Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2014.

2. Al. Vancea, F. Boian, D. Bufnea, A. Gog, A. Darabant, A. Sabau – Arhitectura calculatoarelor. Limbajul de asamblare 80x86., Editura Risoprint, Cluj-Napoca, 2005.

3. A. Gog, A. Sabau, D. Bufnea, A. Sterca, A. Darabant, Al. Vancea – Programarea în limbaj de asamblare 80x86. Exemple si aplicatii., Editura Risoprint, Cluj-Napoca, 2005.

4. Randal Hyde – The Art of Assembly Programming, No Starch Press, 2003.

(http://homepage.mac.com/randyhyde/webster.cs.ucr.edu/www.artofasm.com/DOS/index.html)

5. Boian F.M. Vancea A. Arhitectura calculatoarelor, suport de curs. Facultatea de Matematica si

Informatica, Centrul de Formare Continua si Invatamânt la Distanta,. Ed. Centrului de Formare Continua si Invatamânt la Distanta, Cluj, 2002

6. Irvine, K.R., 2015. Assembly language for x86 processors.

7. Kusswurm, D., 2014. Modern X86 Assembly Language Programming. Springer.

8. Carter, P.A., 2004. *PC Assembly Language*. Github: (http://pacman128.github.io/static/pcasm-book.pdf) 9. Cavanagh, J., 2013. *X86 Assembly Language and C Fundamentals*. CRC Press.

10. Guide, P., 2011. Intel® 64 and ia-32 architectures software developer's manual. *Volume 3B: System programming Guide, Part, 2*, p.11.

(http://www.facweb.iitkgp.ac.in/~goutam/compiler/readingMaterial/intelXeon/253665.pdf)

11. Bartlett, Jonathan. "Nasm (Intel) Assembly Language Syntax." In *Learn to Program with Assembly: Foundational Learning for New Programmers*, pp. 271-273. Berkeley, CA: Apress, 2021.

12. Zhirkov, Igor, and Igor Zhirkov. "Assembly Language." Low-Level Programming: C, Assembly, and Program Execution on Intel® 64 Architecture, pp 17-38, 2017

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course exists in the studying program of all major universities in Romania and abroad;

The content of the course is considered by the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Testing the basic principles	Written exam	45 %

	of the domain and their		
	interactions		
	Verifying the understanding of the assembly language basic operations and mechanisms	Midterm test (week 7 or week 8)	15 %
10.5 Seminar/lab activities	11	Average grade received for the laboratory work	15 %
	Developing and implementing an assembly language code solution for a given problem	Practical exam	15 %
	Evaluating the students activities during the seminaries	Seminar activity	10 %
10.6 Minimum performance standards			
For successfully passing the examination, a student must have at least 5 for the laboratory average, for the written exam, for the practical exam, and minimum 5 as a final grade.			

Date

Signature of course coordinator

Signature of seminar coordinator

10.04.2023 PhD. Lecturer Coroiu Adriana Mihaela PhD. Lecturer Coroiu Adriana Mihaela

TROUD

Algria

Date of approval

.....

Signature of the head of department

Prof. dr. Laura Dioșan