SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the	dis	scipline	Dy	namical Systems			
2.2 Course coordinator			Assoc. Prof. PhD. Marcel-Adrian Şerban				
2.3 Seminar coordinator				Assoc. Prof. PhD. Marcel-Adrian Şerban			
2.4. Year of	2	2.5	3	2.6. Type of	E	2.7 Type of	compulsory
study		Semester		evaluation		discipline	
2.8 Code of discipline MLE0010							

3. Total estimated time (hours/semester of didactic activities)

2 1 Harris a an arreal	4	Of which 22 course	2	2.2	1/1
5.1 nours per week	4	Of which: 3.2 course	2	3.3	1/1
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	14/14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					10
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					10
Tutorship 2					
Evaluations					19
Other activities:					-
3.7 Total individual study hours		69			•
3.8 Total hours per semester		125			

3.8 Total hours per semester	125
3.9 Number of ECTS credits	5

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course

5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

Professional competencies	•	C4.2 Defining basic concepts and principles of computer science and mathematical theories and models C4.2 Explain and interpret mathematical and computer science models
rsal encies	•	CT 1. Applying the rules of rigorous and efficient work, manifesting responsible attitudes towards the scientific and didactic field, for the optimal and creative capitalization of one's own potential in specific situations, respecting the principles and norms of professional ethics.
Transve compete	•	CT 3. Efficient use of information sources and resources of communication and assisted professional training, both in Romanian and in a language of international circulation

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Introduction to differential equations and mathematical modelling using differential equations and systems of differential equations
7.2 Specific objective of the discipline	 Solving the most important solvable differential equations. Modelling phenomena by differential equations and systems of differential equations. Analysis of dynamical systems generated by equations and systems of differential equations.

8. Content

8.1 Course	Teaching methods	Remarks
1. The notions of differential equation and solution.	• Interactive exposure	
Examples of models leading to differential equations	• Explanation	
	Conversation	
	• Didactical	
	demonstration	
2. Classes of first-order sovable differential	• Interactive exposure	
equations: equations with separable variables,	• Explanation	
homogeneous equations, linear equations, Bernoulli	Conversation	
equations, exact differential equations.	Didactical	
	demonstration	
3. Second order differential equations, linear	• Interactive exposure	
equations, fundamental system of solutions, variation	• Explanation	
of constants method, linear equations with constant	Conversation	
coefficients	Didactical	
	demonstration	
4. Systems of linear differential equations,	• Interactive exposure	
fundamental system of solutions, variation of	• Explanation	
constants, linear systems with constant coefficients	Conversation	

	Didactical	
	demonstration	
5. Mathematical models governed by first order	• Interactive exposure	
differential equations: radioactive decay, C14 dating	• Explanation	
method, the bodies cooring law, escape velocity.	• Conversation	
	• Didactical	
6 Mathematical models governed by second order	demonstration	
differential equations: mathematical pendulum	Interactive exposure Exploration	
harmonic pendulum (free oscillations, forced	Conversation	
oscillations)	Didactical	
	demonstration	
7. Dynamical system of scalar autonomous	• Interactive exposure	
differential equations, flow, equilibrium points,	• Explanation	
stability, phase portrait	Conversation	
	Didactical	
	demonstration	
8. Mathematical models governed by autonomous	• Interactive exposure	
equations: the Malthus model, the Verhulst model,	• Explanation	
harvesting models in population dynamics	Conversation	
	• Didactical	
	demonstration	
9. Dynamical system of planar autonomous systems,	• Interactive exposure	
now, equilibrium points, stability, phase portrait	• Explanation	
	• Conversation	
	Didactical demonstration	
10 Mathematical models governed by autonomous	Interactive exposure	
systems: prev-predator model, competition model.	Fxplanation	
two-species symbiosis model, SIR epidemiological	Conversation	
model	Didactical	
	demonstration	
11. Stability of equilibrium points by Lyapunov	Interactive exposure	
functions	Explanation	
	Conversation	
	Didactical	
	demonstration	
12. Methods of approximating solutions: successive	• Interactive exposure	
approximation sequence, Taylor series method,	• Explanation	
power series method	• Conversation	
	• Didactical	
	demonstration	
13. Numerical methods for approximating solutions:	Interactive exposure	
Euler's method, Taylor's method, Runge-Kutta	• Explanation	
methods	Conversation	
	Didactical	
	demonstration	
14. Stability of numerical methods	• Interactive exposure	
	• Explanation	
	Conversation	
	• Didactical	
	aemonstration	

Bibliography

1. I. A. Rus, Ecuații diferențiale, ecuații integrale si sisteme dinamice, Transilvania Press, Cluj-Napoca, 1996.

2. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

3. D. Trif, Metode numerice în teoria sistemelor dinamice, Transilvania Press, 1997.

3. S.L. Campbell, R. Haberman, Introduction to Differential Equations with Dynamical Systems, Princeton Univ. Press, 2008

8.2 Seminar	Teaching methods	Remarks
1. Solvable first order differential equations:	• Exercise	
separable differential equations, Euler homogeneous	• Explanation	
differential equations, linear equations.	Didactical	
	demonstration	
2. Second order differential equations : linear	• Exercise	
equations, fundamental system of solutions, linear	• Explanation	
equations with constant coefficients	Didactical	
	demonstration	
3. Systems of linear differential equations:	• Exercise	
fundamental system of solutions, fundamental matrix	• Explanation	
of solutions, linear systems with constant coefficients	Didactical	
	demonstration	
4. Problems attached to differential equations:	• Exercise	
1	• Explanation	
	• Didactical	
	demonstration	
5. Test paper	• Exercise	
6. Dynamical systems generated by scalar	• Exercise	
autonomous differential equations: flow, equilibrium	Explanation	
points, stability	Didactical	
	demonstration	
7. Dynamical systems generated by planar systems of	• Exercise	
autonomous differential equations: flow, equilibrium	• Explanation	
points, stability.	Didactical	
	demonstration	

Bibliography

1. R. PRECUP, Ecuatii diferentiale, Risoprint, Cluj-Napoca, 2011.

2. G. MOROSANU, Ecuatii diferentiale. Aplicatii, Ed. Acad., Bucuresti, 1990.

3. G. MICULA, P. PAVEL, Ecuatii diferentiale si integrale prin exercitii si probleme, Ed. Dacia, Cluj, 1989.

4. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

8.3 Laboratory	Teaching methods	Remarks
1. Introduction to MAPLE	• Exercise	
	Explanation	
	Individual study	
2. Solving differential equations with MAPLE	• Exercise	
	Explanation	
	 Individual study 	
3. Solving systems of differential equations with	• Exercise	
MAPLE		

	• Explanation
	 Individual study
	• Individual study
4. Mathematical models given by differential	• Exercise
equations	• Explanation
	Individual study
5. Mathematical models given by second order	• Exercise
differential equations	• Explanation
	Individual study
6. Planar systems of autonomous differential	• Exercise
equations	• Explanation
	Individual study
7. Laboratory test	
Bibliography	

1. S. Lynch, Dynamical Systems with Applications using MAPLE, Birkauser, 2001.

2. M.A. Şerban, Ecuații și sisteme de ecuații diferențiale, Ed. Presa Univ. Clujană, Cluj-Napoca, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content of this discipline is in accordance with the curricula of the most important universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	• Knowledge of concepts and basic results			
	• Ability to justify by proofs theoretical results	Final written exam	70%	
10.5 Seminar/lab activities	• Ability to apply concepts and results acquired during the course in Differential Equations	Seminar written test Laboratory practical test	30%	
10.6 Minimum performance standards				
• Fulfillment of the seminar / laboratory attendance criterion (75% seminar attendance, 90% laboratory				

attendance)

• Successful passing of the exam is conditioned by the final grade that has to be at least 5.

Date	Signature of course coordinator	Signature of seminar coordinator
25.04.2023	Assoc. Prof. PhD. Marcel-Adrian ŞERBAN	Assoc. Prof. PhD. Marcel-Adrian ŞERBAN

Signature of the head of department

.....

Date of approval

.....