1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)		Graph Algorithms / Algoritmica grafelor				
(ro)						
2.2 Course coordinator		Lect. PhD. Radu Lupsa				
2.3 Seminar coordinator		Le	Lect. PhD. Radu Lupsa			
2.4. Year of study 1	2.5 Semester	2	2.6. Type of	С	2.7 Type of	Compulsor
			evaluation		discipline	У
2.8 Code of the	MLE5025					
discipline						

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per we	eek	4	Of which: 3.2	2 course	2	3.3	1 sem + 1
						seminar/laboratory	lab
3.4 Total hours i	n the curriculum	56	Of which: 3.5	5 course	28	3.6	28
						seminar/laboratory	
Time allotment:							hours
Learning using r	nanual, course sup	port,	bibliography, c	course no	tes		20
Additional documentation (in libraries, on electronic platforms, field documentation)						10	
Preparation for seminars/labs, homework, papers, portfolios and essays						30	
Tutorship						4	
Evaluations						5	
Other activities:						-	
3.7 Total individual study hours 69							
3.8 Total hours	3.8 Total hours 125						
per semester							
3.9 Number of 5							
ECTS credits							

4. Prerequisites (if necessary)

4.1. curriculum	Data Structures and Algorithms
4.2. competencies	Average skills in analysis and design of algorithms and data
	structures, including implementing them in a programming
	language.

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	Laboratory with computers; high level programming language
activities	environment (C++, Java, .NET, python)

6. Specific competencies acquired

Professional competencies-	 C3.2 Identificarea si explicarea modelelor informatice de baza adecvate domeniului de aplicare C3.3 Utilizarea modelelor si instrumentelor informatice si matematice pentru rezolvarea problemelor specifice domeniului de aplicare C 4.2 Interpretarea de modele matematice şi informatice (formale) C 4.3 Identificarea modelelor si metodelor adecvate pentru rezolvarea unor probleme reale
Transversal competencies	 CT1 Aplicarea regulilor de muncă organizată și eficientă, a unor atitudini responsabile față de domeniul didactic-științific, pentru valorificarea creativă a propriului potențial, cu respectarea principiilor și a normelor de etică profesională CT3 Utilizarea unor metode și tehnici eficiente de învățare, informare, cercetare și dezvoltare a capacităților de valorificare a cunoștințelor, de adaptare la cerințele unei societăți dinamice și de comunicare în limba română și într-o limbă de circulație internațională

7. Objectives of the discipline (outcome of the acquired competencies)

· · ·	
7.1 General objective of the	Knowing the graph theoretical concepts and using these concepts in
discipline	the problem modelling.
	Knowing how to implement the graph algorithms in a programming
	language.
7.2 Specific objective of the	Analysing the issues around the main topics of graph: connectivity,
discipline	shortest paths, modelling prerequisites and activity planning, flows,
	traveling salesman problem, planar graphs.

8. Content

8.1 Course	Teaching methods	Remarks
1. Basic graph theory definitions (graph,	Exposure:	
multigraph, directed graph/multigraph, walk,	description,	
trail, path), basics on graph representations	explanation,	
	examples, debate	
2. In-deep study of possible graph representations	Exposure:	
	description,	

	1
	explanation,
2. Consectivity on table start with any literat	examples, debate
3. Connectivity and shortest path problems.	Exposure:
Depth-first and breadth-first traversal of a	description,
graph. Connected and strongly-connected	explanation,
components.	examples, debate
4. Minimum-cost path in a graph. Dynamic	Exposure:
programming approach. Bellman-Ford	description,
algorithm.	explanation,
	examples, debate
5. Dijkstra's algorithm . A-star algorithm.	Exposure:
Floyd-Warshall algorithm.	description,
	explanation,
	examples, debate
6. Dependency graphs, partial order and	Exposure:
topological sorting. Topological sorting	description,
algorithms and strongly connected components	explanation,
algorithms.	examples, debate
7. Activity planning problem and algorithms.	Exposure:
	description,
	explanation,
	examples, debate
8. Trees and forests. Minimum spanning trees.	Exposure:
Kruskal and Prim algorithms.	description,
	explanation,
	examples, debate
9. NP-complete problems. Hamiltonian cycle,	Exposure:
Traveling Salesman Problem.	description,
	explanation,
	examples, debate
10. Other hard problems: clique, vertex cover,	Exposure:
colouring.	description,
C C	explanation,
	examples, debate
11. Eulerian cycle. Planar graphs: Euler's relation,	Exposure:
K5 and K3,3 graphs, relations between number	description,
of edges and vertices.	explanation,
	examples, debate
12. Transport networks. Maximum flow.	Exposure:
Ford-Fulkerson algorithm.	description,
8	explanation,
	examples, debate
13. Maximum flow of minimum cost.	Exposure:
	description,
	explanation,
	examples, debate
14. Matching problem	Exposure:
14. Matching problem	description,

	explanation,	
Bibliography	examples, debate	
Dionography		
CORMEN, LEISERSON, RIVEST: Introducere in algo-	ritmi. Editura Computer	Libris Agora, 2000.
T. TOADERE: Grafe. Teorie, algoritmi si aplicatii , Ed.	· •	•
KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Uni	-	
BERGE C., Graphes et hypergraphes, Dunod, Paris 197	•	
BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnic	a, 1972	
http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/		
8.2 Seminar	Teaching methods	Remarks
1. Basic definitions. Graph representations.	Dialogue, debate,	
	case study, guided	
	discovery	
2. More on graph representations. Graph	Dialogue, debate,	
traversals. Connected components.	case study, guided	
	discovery	
3. Finding shortest path. Bellman-Ford algorithm.	Dialogue, debate,	
	case study, guided	
	discovery	
4. Shortest path: Dijkstra and Floyd-Warshall.	Dialogue, debate,	
	case study, guided	
	discovery	
5. Tree traversal. Minimum spanning tree:	Dialogue, debate,	
Kruskal and Prim algorithms.	case study, guided	
	discovery	
6. Planar graphs. Hard problems in graph theory.	Dialogue, debate,	
	case study, guided	
	discovery	
7. Maximim flow and matching problems.	Dialogue, debate,	
	case study, guided	
I ah anatany	discovery	Remarks
Laboratory	Teaching methods	Kemarks
1. Graph representations	Dialogue, debate, case study, guided	
	discovery	
2. More on graph representations	Dialogue, debate,	
2. Wore on graph representations	case study, guided	
	discovery	
3. Connectivity and minimum length paths	Dialogue, debate,	
c. connectivity and minimum relight paths	case study, guided	
	discovery	
4. Minimum cost paths	Dialogue, debate,	
	case study, guided	
	discovery	
5. Dependency graphs. Minimum spanning trees.	Dialogue, debate,	
		1

	case study, guided			
	discovery			
6. NP-complete problems	Dialogue, debate,			
	case study, guided			
	discovery			
7. Finishing the lab activity.	Dialogue, debate,			
	case study, guided			
	discovery			
Bibliography				

CORMEN, LEISERSON, RIVEST: Introducere in algoritmi, Editura Computer Libris Agora, 2000. T. TOADERE: Grafe. Teorie, algoritmi si aplicatii , Ed. Albastra, Cluj-N., 2002 KÁSA ZOLTÁN: Combinatiroca cu aplicatii, Presa Universitara Clujeana, 2003. BERGE C., Graphes et hypergraphes, Dunod, Paris 1970. BERGE C., Teoria grafurilor si aplicatiile ei, Ed. Tehnica, 1972 http://www.cs.ubbcluj.ro/~rlupsa/edu/grafe/

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies; The course exists in the studying program of all major universities in Romania and abroad.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	66.67%
10.5 Seminar/lab activities	be able to implement course concepts and algorithms	Verifying the practical works.	33.33%
10.6 Minimum performance	e standards		•
At least grade 5 (from	n a scale of 1 to 10) at both writt	en exam and laboratory work.	

Date

Signature of course coordinator

.....

Signature of seminar coordinator

2023-04-26

.....

Date of approval

.....

Signature of the head of department

.....