SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş - Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

2. Information regarding the discipline

2.1 Name of the dis	cipline		Pr	obability Theory			
2.2 Course coordina	ator		As	ssoc. Prof. PhD Habil. H	Ian	nelore Lisei	
2.3 Seminar coordinator		As	ssoc. Prof. PhD Habil. H	Han	nelore Lisei		
2.4. Year of study	1	2.5 Semester	2	2.6. Type of evaluation	E	2.7 Type of discipline	DF / Compulsory
2.8 Code of the disc	cipline	MLE0029				•	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					29
Additional documentation (in libraries, on electronic platforms, field documentation)					10
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorship					5
Evaluations					5
Other activities:					-
3.7 Total individual study hours 69					
3.8 Total hours per semester		125			
3.9 Number of ECTS credits		5			

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis, Algebra
4.2. competencies	Set Theory, Combinatorics

5. Conditions (if necessary)

5.1. for the course	Classroom with blackboard/video projector
5.2. for the seminar /lab activities	Classroom with blackboard/video projector

6. Specific competencies acquired

Professional competencies	 C1.1. Identification of notions, description of theories and use of specific language C2.3. Application of appropriate theoretical models of analysis for solving given problems C5.2 Using mathematical arguments to prove mathematical results.
Transversal	CT1 Application of efficient and rigorous working rules, manifest responsible attitudes
competencies	towards the scientific and didactic fields, respecting the professional and ethical principles

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Acquire basic knowledge of Probability Theory, with focus on theoretical aspects, as well as its applications
7.2 Specific objective of the discipline	 Application of classical probabilistic models to solve real life problems Become familiar with classical probability distributions Properties of sequences of random variables

8. Content

8.1 Course	Teaching methods	Remarks
1. Introduction to Probability Theory.	Interactive exposure	
Experiments and events.	Explanation	
	Conversation	
	Didactical demonstration	
2. Probability function; independence of events;	Interactive exposure	
conditional probability; Bayes' formula	Explanation	
	Conversation	
	Didactical demonstration	
3. Sampling with/without replacement	Interactive exposure	
	Explanation	
	Conversation	
	Didactical demonstration	
4. Random variables; independence of random	Interactive exposure	
variables; classical discrete probability	Explanation	
distributions	Conversation	
	Didactical demonstration	
5. Cumulative distribution function	Interactive exposure	

Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration
Interactive exposure
Explanation
Conversation
Didactical demonstration

Bibliography

- Dekking, F. M.; Kraaikamp, C.; Lopuhaä, H. P.; Meester, L. E., *A modern introduction to probability and statistics. Understanding why and how.* Springer-Verlag, London, 2005
- Klenke, A., Probability Theory: A Comprehensive Course. Springer-Verlag, London, 2008
- Lisei, H., Probability Theory, Casa Cărții de Știință, Cluj-Napoca, 2004
- Morariu, C. O., *Probabilități și statistică aplicată*, Editura Universității "Transilvania", Brașov, 2010.
- Ross, S., A First Course in Probability, 9th edition, Pearson Education, 2014

8.2 Seminar / laboratory	Teaching methods	Remarks
1. Combinatorics	Interactive exposure Explanation	

	Conversation
	Individual and group
	work
2. Probability calculus	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
3. Conditional probability	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
4. Classical probabilistic models (I)	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
5. Classical probabilistic models (II)	Interactive exposure
•	Explanation
	Conversation
	Individual and group
	work
6. Cumulative distribution function; probability	Interactive exposure
density function	Explanation
	Conversation
	Individual and group
	work
7. Joint cumulative distribution function; joint	Interactive exposure
density function	Explanation
	Conversation
	Individual and group
	work
8. Naive Bayes' classification	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
9. Numerical characteristics of random variables	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
10. Probability inequalities	Interactive exposure
	Explanation
	Conversation
	Individual and group
	work
11. Moment generating function	Interactive exposure
	Explanation
	Conversation

	Individual and group	
	work	
12. Sequences of random variables	Interactive exposure	
	Explanation	
	Conversation	
	Individual and group	
	work	
13. Laws of large numbers	Interactive exposure	
	Explanation	
	Conversation	
	Individual and group	
	work	
14. Applications of limit theorems	Interactive exposure	
	Explanation	
	Conversation	
	Individual and group	
	work	

Bibliography

10 E--- ----

- Grimmett G.R., Stirzaker D.R., *One thousand exercises in probability*. Oxford University Press, Oxford, 2003.
- Lisei H., Grecksch, W., Iancu, M., *Probability: Theory, Examples, Problems, Simulations.* World Scientific Publishing, Singapore, 2020.
- Lisei, H., Micula, S., Soos, A., *Probability Theory trough Problems and Applications*, Cluj University Press, Cluj-Napoca, 2006.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The knowledge and skills acquired in this course give students a foundation for launching a career in scientific research.

10. Evaluation				
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 to acquire the basic principles from Probability Theory to be able to apply correctly the course concepts on various applications problem-solving 	Written exam	80%	
10.5 Seminar activities	► to be able to apply the course concepts to solve problems	Continuous observation during the semester, active participation in the seminars	20%	
10.6 Minimum performance standards				

> At least grade 5 (on a scale from 1 to 10) at the written exam.

Date	Signature of course coordinator	Signature of seminar coordinator
22.04.2023	Assoc. Prof. PhD Habil. Hannelore Lisei	Assoc. Prof. PhD Habil. Hannelore Lisei
Date of approval		Signature of the head of department
		Prof. Dr. Andrei Mărcus