SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme /	Artificial Intelligence
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disc	cipli	ne Geometry	netry				
2.2 Course coordinat	.2 Course coordinator Lect. Dr. Iulian Simion						
2.3 Seminar coordin	2.3 Seminar coordinator Lect. Dr. Iulian Simion						
2.4 Year of study	1	2.5 Semester	2	2.6. Type of evaluation	VP	2.7 Type of	Compulsory
						discipline	
2.8 Disciplinei code MLE0014							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar	28
Time allotment:					hours
Learning using manual, course support, bibliography, course notes20					20
Additional documentation (in libraries, on electronic platforms, field documentation) 10					10
Preparation for seminars/labs, homework, papers, portfolios and essays				14	
Tutorship					14
Evaluations					11
Other activities:				-	
3.7 Total individual study hours69					
3.8 Total hours per semester 125					
3.9 Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1 curriculum	Basic knowledege in algebra and calculus.
4.2 competencies	Competencies of using the above mentioned curricula.

5. Conditions (if necessary)

5.1 for the course	
5.2 for the seminar /lab activities	

6. Specific competencies acquired

-	
ncies	• C1.1 Idetifying the notions, describing the theories and using the specific language
Professional compete	• C2.3 Applying the adequate analytical theoretical methods to a given problem
encies	CT1. Applying some rules of precise and efficient work, showing a responsible attitude regarding the the scientific domain and teaching training for an optimal and creative
npete	development of the personal potential in specific situations, respecting the deontological
al cor	norms.
svers	
Tran	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	Basic notions and methods în the context of analytic geometry
discipline	
7.2 Specific objective of the	Classification of quadratic curves and surfaces
discipline	

8. Content

8.1 Course	Teaching methods	Remarks
1-2. Affine spaces	Exposition, proofs,	Two lectures
Geometric vectors	examples	
Vector space structure		
Cartesian coordinate frames		
Changing coordinates		
• Affine subspaces in dimension 2 and 3		
Hyperplanes		
3-4. Euclidean spaces	Exposition, proofs,	Two lectures
Scalar product	examples	
Gram matrix		
Orthonormal frames		
Gram-Schmidt process		
Applications		
Spectral Theorem		
5. Orientation	Exposition, proofs,	
Box product	examples	
Cross product		

Properties		
Applications		
6. Affine maps	Exposition, proofs,	
 Parallel projections and reflections 	examples	
Orthogonal projections and reflections		
7. Isometries	Exposition, proofs,	
• Rotations in dimension 2 and 3	examples	
Displacements		
• Classification of isometries in dimension 2 and 3		
8-9. Quadratic curves	Exposition, proofs,	Two lectures
• Ellipse, hyperbola, parabola	examples	
Canonical equations		
Relative position of a line		
Tangent lines		
10. Classification of quadrics (dimension 2 and 3)	Exposition, proofs,	
Reducing to canonical form	examples	
• Isometric classification of quadrics		
Affine classification of quadrics		
11-12. Quadratic surfaces	Exposition, proofs,	Two lectures
• Ellipsoid, Cone, Hyperboloid, Paraboloid	examples	
Canonical equation		
Tangent planes		
13. Curvatures	Exposition, proofs,	
Curvature of curves	examples	
Curvatures of surfaces		
14. Quaternions	Exposition, proofs,	
Algebraic description	examples	
Quaternions and rotations		
Bibliography		
[1] I. Simion, Geometry – material de curs, 2024.		
[2] P.A. Blaga, Geometrie – material de curs, 2019.		
[3] M. Troyanov, Cours de géométrie, Lausanne, 20	11.	
[4] E. Sernesi, Linear Algebra. A geometric Approac	ch (Translated by J. Montal	di), 2009.
8.2 Seminar	Teaching methods	Remarks
1-2. Affine spaces	Dialog, problem solving	Two tutorials
Geometric vectors		
Vector space structure		
Cartesian coordinate frames		
Changing coordinates		
• Affine subspaces in dimension 2 and 3		
Hyperplanes		
3-4. Euclidean spaces	Dialog, problem solving	Two tutorials
Scalar product		

Gram matrix		
Orthonormal frames		
Gram-Schmidt process		
Applications		
Spectral Theorem		
5. Orientation	Dialog, problem solving	
Box product		
Cross product		
Properties		
Applications		
6. Affine maps	Dialog, problem solving	
Parallel projections and reflections		
Orthogonal projections and reflections		
7. Isometries	Dialog, problem solving	
• Rotations in dimension 2 and 3		
Displacements		
Classification of isometries in dimension 2		
and 3		
8-9. Quadratic curves	Dialog, problem solving	Two tutorials
• Ellipse, hyperbola, parabola		
Canonical equations		
Relative position of a line		
Tangent lines		
10. Classification of quadrics (dimension 2 and 3)	Dialog, problem solving	
Reducing to canonical form		
• Isometric classification of quadrics		
• Affine classification of quadrics		
11-12. Quadratic surfaces	Dialog, problem solving	Two tutorials
• Ellipsoid, Cone, Hyperboloid, Paraboloid		
Canonical equation		
Tangent planes		
13. Curvatures	Dialog, problem solving	
Curvature of curves		
Curvatures of surfaces		
14. Quaternions	Dialog, problem solving	
Algebraic description		
Quaternions and rotations		
Bibliography		
[1] I. Simion, Geometry – material de curs, 2024.		
[2] P.A. Blaga, Geometrie – material de curs, 2019.		
[3] M. Trovanov, Cours de géométrie, Lausanne, 20	11.	

[4] E. Sernesi, Linear Algebra. A geometric Approach (Translated by J. Montaldi), 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The material of this course serves other courses
 - a deeper understanding of linear algebra
 - affine transformations are necessary examples for a group theory course
 - \circ $\;$ quadrics are necessary examples in calculus courses
 - coordinate changes, projections, affine transformations are necessary for computer graphics
 - Applications of the theory are presented wherever appropriate

10. Evaluation

٠

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	Critical grasp of the	Two written partial exams	40% and 60%		
	learned material, ability to	at the middle and at the end	respectively		
	use what was learned	of the semester			
10.5 Seminar	Ability to use the theory	Points during the tutorial	Can lead up to one		
	for solving problems	for active participation	extra point for the		
			final grade		
10.6 Minimum performance standards					
75% attendance at the Seminar					
At least grade 5 for the final grade (excluding the bonus points obtained during the tutorials).					

Date

Signature of course coordinator

Signature of seminar coordinator

21. February 2024

Lect. Dr. Iulian Simion

Lect. Dr. Iulian Simion

Date of approval

Signature of the head of department

••••••