
SYLLABUS

1. Information regarding the programme

1.1 Higher education

institution

Babes-Bolyai University

1.2 Faculty Faculty of Mathematics and Computer Science

1.3 Department Department of Computer Science

1.4 Field of study Computer Science

1.5 Study cycle Undergraduate

1.6 Study programme /

Qualification

Artificial Intelligence

2. Information regarding the discipline

2.1 Name of the discipline (en)

(ro)

Fundamental algorithms

Algoritmi fundamentali

2.2 Course coordinator Prof. dr. Camelia Chira

2.3 Seminar coordinator Prof. dr. Camelia Chira

2.4. Year of study 1 2.5 Semester 1 2.6. Type of

evaluation

E 2.7 Type of

discipline

Compulsory

2.8 Code of the

discipline

MLE5200

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week 6 Of which: 3.2 course 2 3.3

seminar/laboratory

2 sem

2 lab

3.4 Total hours in the curriculum 84 Of which: 3.5 course 28 3.6

seminar/laboratory

56

Time allotment: hours

Learning using manual, course support, bibliography, course notes 14

Additional documentation (in libraries, on electronic platforms, field documentation) 12

Preparation for seminars/labs, homework, papers, portfolios and essays 14

Tutorship 8

Evaluations 18

Other activities:

3.7 Total individual study hours 66

3.8 Total hours per semester 150

3.9 Number of ECTS credits 6

4. Prerequisites (if necessary)

4.1. curriculum 

4.2. competencies 

5. Conditions (if necessary)

6. Specific competencies acquired

P
ro

fe
ss

io
n

a
l

co
m

p
et

en
ci

es

C1.1 Definition and description of programming paradigms and of language specific

mechanisms, as well as identification of syntactic and semantic differences.

C1.2 Description of existing software applications, on different levels of abstraction

(architecture, classes, methods) using adequate basic knowledge.

C1.3 Elaboration of adequate source code and testing of components in a well-known

programming language, based on given specifications.

C1.4 Testing applications based on testing plans.

C1.5 Development of units of programs and corresponding documentation

T
ra

n
sv

er
sa

l

co
m

p
et

en
ci

es

TC1 Application of efficient and rigorous working rules, manifest responsible attitudes

towards the scientific and didactic fields, underlying the individual potential and respecting

professional and ethical principles.

TC3 Use of efficient methods and techniques for learning, information, research and

development of abilities for knowledge exploitation, for adapting to the needs of a dynamic

society and for communication in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

8. Content

8.1 Course Teaching methods Remarks

1. Introduction to software development

processes

 What is programming: algorithm, program,

basic elements of the Python language, Python

interpreter, basic roles in software engineering

 How to write programs: problem statement,

requirements, feature driven development process

 Example: calculator

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

2. Procedural programming

 Compound types: list, tuple, dictionary
 Interactive exposure

 Explanation

5.1. for the course -

5.2. for the seminar /lab

activities

-

7.1 General objective of the

discipline

 To introduce the basic concepts of software engineering (design,

implementation and maintenance) and to learn Python programming

language

7.2 Specific objective of the

discipline

 To introduce the key concepts of programming

 To introduce the basic concepts of software engineering

 To gain understanding of basic software tools used in development of

programs

 To learn Python programming language and tools to develop, run, test and

debug programs

 To acquire and improve a programming style according to the best

practical recommendations

 Functions: test cases, definition, variable scope,

calling, parameter passing

 Test-driven development (TDD), refactoring

 Conversation

 Examples

 Didactical

demonstration

3. Modular programming

 What is a module: Python module definition,

variable scope in a module, packages, standard

module libraries, deployment

 Eclipse + PyDev

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

4. User defined types

 How to define new data types: encapsulation,

data hiding in Python, guidelines

 Introduction to object-oriented programming

 Exceptions

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

5. Software design guidelines

 Layered architecture: UI layer, application

layer, domain layer, infrastructure layer

 How to organize source code: responsibilities,

single responsibility principle, separation of

concerns, dependency, coupling, cohesion

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

6. Object-oriented programming

 UML diagrans

 Implementation of classes in Python

 Objects and classes: classes, objects, fields,

methods, Python scope and namespace

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

7. Design aspects

 Top down and bottom up strategies

 UI elements

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

8. Program testing and inspection

 Testing methods: exhaustive testing, black box

testing, white box testing

 Automated testing, TDD

 File operations in Python

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

9. Recursion
 Notion of recursion

 Direct and indirect recursion

 Examples

 Computational complexity

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

10. Search algorithms

 Problem definition

 Search methods: sequential, binary

 Complexity of algorithms

Sorting algorithms

 Problem definition

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

 Sort methods: Bubble Sort, Selection Sort,

Insertion Sort, Quick Sort

 Complexity of algorithms

11. Backtracking

 General presentation of the method

 Algorithms and complexity

 Examples

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

12. Divide et impera, Greedy

 General presentation of the methods

 Algorithms and complexity

 Examples

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

13. Dynamic programming

 Method description

  Examples

 Interactive exposure

 Explanation

 Conversation

 Examples

 Didactical

demonstration

14. Revision

Bibliography

1. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

2. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

3. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

http://refactoring.com/catalog/index.html

4. The Python Programming Language - https://www.python.org/

5. The Python Standard Library - https://docs.python.org/3/library/index.html

6. The Python Tutorial - https://docs.python.org/3/tutorial/

8.2 Seminar / laboratory Teaching methods Remarks

1. Simple Python programs  Interactive exposure

 Explanation

 Conversation

 Didactical

demonstration

2. Procedural Programming

3. Modular Programming

4. Feature-driven software development

5. Abstract data types

6. Design principles

7. Object-oriented programming

8. Program design. Layered architecture

9. Inspection and testing

10. Recursion. Complexity of algorithms

11. Search and sorting algorithms

12. Problem solving methods: Backtracking

13. Problem solving methods: Greedy

14. Practical test

Bibliography

1. M.L. Hetland, Beginning Python: From Novice to Professional, Apress, 2005.

2. M. Frentiu, H.F. Pop, Fundamentals of Programming, Cluj University Press, 2006.

3. K. Beck, Test Driven Development: By Example. Addison-Wesley Longman, 2002.

http://en.wikipedia.org/wiki/Test-driven_development

4. M. Fowler, Refactoring. Improving the Design of Existing Code, Addison-Wesley, 1999.

http://refactoring.com/catalog/index.html

5. The Python Programming Language - https://www.python.org/

6. The Python Standard Library - https://docs.python.org/3/library/index.html

7. The Python Tutorial - https://docs.python.org/3/tutorial/

9. Corroborating the content of the discipline with the expectations of the epistemic community,

professional associations and representative employers within the field of the program

 The course respects the IEEE and ACM Curricula Recommendations for Computer Science

studies.

 The course exists in the studying program of all major universities in Romania and abroad.
 The content of the course is considered by the software companies as important for average

programming skills.

10. Evaluation

Type of activity 10.1 Evaluation criteria 10.2 Evaluation methods 10.3 Share in the

grade (%)

10.4 Course The correctness and

completeness of the

accumulated knowledge

and the capacity to design

and implement correct

Python programs

Written exam 40%

10.5 Seminar/lab

activities

Be able to design,

implement and test a

Python program

Practical exam 30%

Correctness of laboratory

assignments and

documentation delivered

during the semester

Program and

documentation

30%

10.6 Minimum performance standards

 Each student must demonstrate an acceptable level of knowledge and understanding of the

domain, the ability to present knowledge in a coherent manner and the ability to establish

connections and use this knowledge to solve different problems in Python.

 It is mandatory for each student to attend minimum 10 seminars and 12 labs.

 A minimum grade of 5 should be obtained at the lab activity, practical test and written

examination.

Date Signature of course coordinator Signature of seminar coordinator

26.04.2023 Prof. univ. dr. Camelia Chira Prof. univ. dr. Camelia Chira

Date of approval Signature of the head of department

... Prof. dr. Laura Dioşan

