SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University, Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Artificial intelligence

2. Information regarding the discipline

		<u> </u>					
2.1 Name of the		Advanced	prol	olem solving technic	ques in ma	athematics and i	nformatics
discipline							
2.2 Course coordin	ator						
2.3 Seminar coordi	inator		T	rif Tiberiu-Vasile			
2.4 Year of study	1	2.5 Semester	2	2.6. Type of	Viva	2.7 Type of	facultative
				evaluation	voce	discipline	
2.8 Code of the		MLR2002	2				
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays					10	
Tutorship					2	
Evaluation					2	
Other activities:						

3.7 Total individual study hours	19
3.8 Total hours per semester	75
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1 curriculum	Calculus 1 (Calculus in R) Alecter 1 (Linear Alecter)
4.2 competencies	 Algebra 1 (Linear Algebra) Logical thinking abilities, problematisation

5. Conditions (if necessary)

5.1 For the course	•
5.2 For the seminar/lab	•
activities	

6. Specific competencies aquired

Professional competencies	 C1.4 Recognizing the main classes /types of mathematical problems and selecting the appropriate methods and techniques for their solving C2.1 Identifying the basic notions used to describe some processes and phenomena
Transversal competencies	 CT1 Application of efficient and rigorous working rules, manifest responsible attitudes towards the scientific and didactic fields, respecting the professional and ethical principles. CT3 Use of efficient methods and techniques for learning, information, research and development of abilities for knowledge acquiring, for adapting to the needs of a dynamic society and for communication in Romanian as well as in a widely used foreign language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Preparing students for mathematical competitions by acquiring advanced problem solving methods and techniques
7.2 Specific objectives of the discipline	 Presenting advanced problem solving methods and techniques applicable to mathematical contests for university students Problem solving sessions: presenting solutions to problems given in mathematical competitions for university students (Traian Lalescu, SEEMOUS, IMC, Putnam)

8. Content

8.1 Course	Teaching methods	Remarks
Bibliography		
8.2 Seminar / laboratory	Teaching methods	Remarks
1. Rank of a matrix, the Frobenius and the Sylvester	Lecture, discussion,	
inequalities, applications to solving contest problems	problematisation	
2. Eigenvalues of certain special clases of matrices	Lecture, discussion,	
(Hermitian/symmetric matrices, skew Hermitian/skew	problematisation	
symmetric matrices, unitary/ortogonal matrices), the		
characteristic polynomial, the Cayley-Hamilton theorem, the		
minimal polynomial, the Frobenius theorem, applications to		
solving contest problems		
3. Diagonalizable matrices, special clases of diagonalizable	Lecture, discussion,	
matrices (normal matrices, symmetric matrices), the spectral	problematisation	
theorem for normal matrices, applications to solving contest		
problems		
4. Canonic forms, the unitary triangularization theorem of	Lecture, discussion,	
Schur, the Jordan canonic form theorem, applications to	problematisation	
solving contest problems		
5. Dense sets on the real axis, the Dirichlet and the Kronecker	Lecture, discussion,	
theorems, applications to solving contest problems	problematisation	

6. Perfect sets on the real axis, Cantor's set, applications to	Lecture, discussion,
solving contest problems	problematisation
7. The Lagrange interpolation polynomial and applications to	Lecture, discussion,
solving contest problems	problematisation
8. The generating function method, nonlinear recurences,	Lecture, discussion,
applications to solving contest problems	problematisation
9. The Beta and Gamma functions, applications to solving	Lecture, discussion,
contest problems	problematisation
10. Passing to the limit under the integral sign (the uniform	Lecture, discussion,
convergence theorem, Arzelà's bounded convergence	problematisation
theorem, the dominated convergence theorem for improper	
Riemann integrals), applications to solving contest problems	
11+12. Solving some SEEMOUS problems	Lecture, discussion,
	problematisation
13+14. Solving problems from the "Traian Lalescu"	Lecture, discussion,
mathematical contest for university students	problematisation

Bibliography

- 1. AIGNER M.: Discrete Mathematics. American Mathematical Society, 2007
- 2. DE SOUZA P. N., SILVA J.-N.: Berkeley Problems in Mathematics. Third Edition. Springer, 2004
- 3. GELCA R., ANDREESCU T.: Putnam and Beyond. Springer, 2007
- 4. KEDLAYA K. S., POONEN B., VAKIL R.: The William Lowell Putnam Mathematical Competition 1985 2000. Problems, Solutions, and Commentary. The Mathematical Association of America, 2002
- 5. RĂDULESCU S., RĂDULESCU M.: Teoreme și probleme de analiză matematică. Editura Didactică și Pedagogică, București, 1982
- 6. YAGLOM A. M., YAGLOM I. M.: Challenging Mathematical Problems with Elementary Solutions. Dover, Vol. I 1964, Vol. II 1967
- 7. TRIF T.: Teme pentru perfecționarea profesorilor de matematică. Vol. 3. Analiză matematică. Casa Cărții de Știință, Cluj-Napoca, 2017
- 8. www.imc-math.org/
- 9. www.edumanager.ro/community/documente/concursuri internationale vol 1.pdf
- 10. www.edumanager.ro/community/documente/concursuri internationale vol 2.pdf

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the programme

• The advanced problem solving methods and techniques will be helpful to the future mathematics teacher in preparing his students for mathematical competitions

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in
			grade
10.4 Course			
10.5 Seminar/lab	Knowing some advanced problem	Solving problems during	
	solving methods and techniques	the semester	100%
10.6 Minimum perform	nance standards 5		
•			

Date	Signature of course coordinator	Signature of seminar coordinator
26.4.2023		
Date of approval	Si	gnature of the head of departament