SYLLABUS

1. Information regarding the programme			
1.1 Higher education	Babes-Bolyai University		
institution			
1.2 Faculty	Mathematics and Informatics		
1.3 Department	Informatics		
1.4 Field of study	Informatics		
1.5 Study cycle	Master		
1.6 Study programme /	Distributed Systems in Internet		
Qualification			

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the discipline (en)		GI	PU and distributed ar	chit	ecture computing	
(ro)		Programare pe arhitecturi GPU si distribuite				
2.2 Course coordinator		Conf. dr. Rareș Boian				
2.3 Seminar coordinator	Conf. dr. Rareş Boian					
2.4. Year of study 2	2.5 Semester	3	2.6. Type of evaluation	Ε	2.7 Type of discipline	Mandatory
2.8 Code of the discipline	MME8111		·		· ·	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3	1
				seminar/laboratory	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6	14
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes				39	
Additional documentation (in libraries, on electronic platforms, field documentation)				29	
Preparation for seminars/labs, homework, papers, portfolios and essays				39	
Tutorship				25	
Evaluations				26	
Other activities:					
3.7 Total individual study hours		158			
3.8 Total hours per semester		200			
3.9 Number of ECTS credits		8			

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	 The requirements are posted here http://www.cs.ubbcluj.ro/~rares/course/pagd/
5.2. for the seminar /lab activities	 The requirements are posted here http://www.cs.ubbcluj.ro/~rares/course/pagd/

6. Specific competencies acquired

	Define notions, concepts, theories and models of distributed and GPU architecture
•	Define holions, concepts, meones and models of distributed and GPO architecture
C	computing.
-	
Deveforetorel	Critical and hair and an affekt minimized a method and to derive and for an attaction
	Critical analysis and use of the principles, methods and techniques work for quantitative
competencies at	and qualitative evaluation of the processes within distributed and GPU architectures
	Analy basis concerns and the axis in the field of distributed existence are more many
	Apply basic concepts and theories in the field of distributed systems, programming
l n	nethods and GPU architectures to professional project development
Transversal ·	Execution of the tasks required under specified requirements and the deadlines imposed,
competencies w	vith the rules of professional ethics and moral conduct
-	-
	Information and permanent documentation in its field
	mornation and permatent documentation in its field
•	Seeking to improve business results by engaging in professional activities

7. Objectives of the discipline (outcome of the acquired competencies)

	e (outcome of the acquired competencies)		
7.1 General objective of the	• Introducing the students to general purpose GPU programming. The		
discipline	students should learn the following concepts: parallel architectures,		
	GPU architecture, memory organization, parallelizable algorithms.		
	The students should also learn to use GPU programming APIs and		
	apply them practically in projects		
	 Learning advanced concepts on GPU and distributed architecture 		
	computing		
	Distributed architectures		
7.2 Specific objective of the	· GPU		
discipline	• GPU architecture		
	 Memory organization 		
	 Work scheduling 		
	 NVIDIA CUDA 		
	• OpenCL		
	 Parallelizable algorithms 		
	 Distributed programming paradigms 		

8. Content

of content	
8.1 Course	Teaching methods Remarks
Weeks 1 - 3	Exposition:
Optimizing matrix multiplication	presentation
 Flynn taxonomy; Examples and 	explanation, practical
applications; GPU hardware architecture	examples,
Introduction to NVIDIA CUDA	demonstrations and
Introduction to OpenCL	case studies.
Weeks 4 - 5	Exposition:
· Applications: Fractals	presentation
Applications: Ray tracing	explanation, practical
	examples,
	demonstrations and
	case studies.
Weeks 6 - 8	Exposition:
	1

GPU memory organization	presentation
• GPU work scheduling: blocks, threads,	explanation, practical
atomicoperations, synchronization	examples,
Measuring performance	demonstrations and
	case studies.
Weeks 9 - 10 Distributed programming paradigms	Exposition:
Message passing, Client server, P2P, Message	presentation
System, RPC/RMI/CORBA	explanation, practical
	examples,
	demonstrations and
	case studies.
Weeks 11 - 12 Distributed programming	Exposition:
paradigms	presentation
Publish subscriber, Object Spaces	explanation, practical
	examples,
	demonstrations and
Wester 12 14 Distributed and successing	case studies.
Weeks 13 - 14 Distributed programming	Exposition:
paradigms Mobile agente, Coleborative Applications	presentation
Mobile agents, Colaborative Applications	explanation, practical
	examples, demonstrations and
	case studies.
Bibliography	
1. Ananth Grama, George Karypis, Vipin Kumar, Ansh	ul Gupta, Introduction to Parallel Computing.
Addison-Wesley; 2 edition (January 26, 2003)	
2. Jason Sanders, Edward Kandrot, CUDA by Example	: An Introduction to General-Purpose GPU
Programming, Addison-Wesley Professional; 1 edition	
3. Nicholas Wilt, The CUDA Handbook: A Comprehen	nsive Guide to GPU Programming, Addison-
Wesley Professional; 1 edition (June 11, 2013)	
4. Aaftab Munshi, Benedict Gaster, Timothy G. Mattso	
Programming Guide, Addison-Wesley Professional; 1 e	dition (July 23, 2011)
5. Matthew Scarpino, OpenCL in Action: How to Acce	lerate Graphics and Computations, Manning
Publications (November 17, 2011)	
6. Russ Miller, Laurence Boxer, Algorithms Sequentia	I & Parallel: A Unified Approach, Cengage
Learning; 3 edition (December 20, 2012)	
7. BACON J. Concurrent Systems: Operating Systems,	Database and Distributed Systems - an
integrated approach. Addison-Wesley, 1998	a da ai auliantii Tal Albantun annuul
8. BOIAN F.M. Programare distribuita în Internet; met	ode si aplicatii. Ed. Aldastra, grupul
Microinformatica, Cluj, 1997	COS D C Drogramara congurante no vlatforme
9. BOIAN F.M. FERDEAN C.M., BOIAN R.F., DRAG	
Unix, Windows, Java. Ed. Albastra, grupul Microinform 10. Gerassimos Barlas, Multicore and GPU Programmi	
edition (December 1, 2014)	ng. An integrated Approach, Morgan Kaumann, 1
11. Raphael Couturier, Designing Scientific Applicatio	ns on GPUs (Chanman & Hall/CRC Numerical
Analysis and Scientific Computing Sciences), Chapman and	—
8 2 Seminar / Jahoratory	Teaching methods Remarks

Analysis and Scientific Computing Series), Chapman and Han/CKC (November 21, 2015)				
8.2 Seminar / laboratory	Teaching methods	Remarks		
1. CUDA programming examples	Explanation,			
	examples, case			
	studies, dialog			
2. OpenCL programming examples	Explanation,			
	examples, case			

	studies, dialog
3. GPU Fractals	Explanation,
	examples, case
	studies, dialog
4. GPU Ray tracing	Explanation,
	examples, case
	studies, dialog
5. Distributed system project	Explanation,
	examples, case
	studies, dialog
6. Distributed system project	Explanation,
	examples, case
	studies, dialog
7. Project grading	Explanation,
	examples, case
	studies, dialog

Bibliography

1. Ananth Grama, George Karypis, Vipin Kumar, Anshul Gupta, Introduction to Parallel Computing, Addison-Wesley; 2 edition (January 26, 2003)

2. Jason Sanders, Edward Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Programming, Addison-Wesley Professional; 1 edition (July 29, 2010)

3. Nicholas Wilt, The CUDA Handbook: A Comprehensive Guide to GPU Programming, Addison-Wesley Professional; 1 edition (June 11, 2013)

4. Aaftab Munshi, Benedict Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg, OpenCL Programming Guide, Addison-Wesley Professional; 1 edition (July 23, 2011)

5. Matthew Scarpino, OpenCL in Action: How to Accelerate Graphics and Computations, Manning Publications (November 17, 2011)

6. Russ Miller, Laurence Boxer, Algorithms Sequential & Parallel: A Unified Approach, Cengage Learning; 3 edition (December 20, 2012)

7. BACON J. Concurrent Systems: Operating Systems, Database and Distributed Systems - an integrated approach. Addison-Wesley, 1998

8. BOIAN F.M. Programare distribuita în Internet; metode si aplicatii. Ed. Albastra, grupul Microinformatica, Cluj, 1997

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- Learning the theoretical and methodological concepts and the practical aspects included in the course, students acquire the knowledge required by the Grid on RNCIS for the partial competences
- The course follows the IEEE and ACM Curricula Recommendations for Computer Science studies.
- The course exists in the curricula of similar departments in Romania

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Understand and be able to use the concepts and methods taught by the course	Written exam	40%

10.5 Seminar/lab activities	Ability to correctly solve	GPU project	30%	
	practical problems from	Distributed project	30%	
	the course curricula			
10.6 Minimum performance standards				
Ø Minimum final grade of 5				

Date	Signature of course coordinator	Signature of seminar coordinator
20.04.2018	Assoc.prof. Rareş Boian	Assoc. prof. Rareş Boian
Date of approval	Signature of the head of department	
	Prof.dr. Anca Andreica	