SYLLABUS

1.1 Higher education	Babeş-Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme /	Distributed Systems in Internet
Qualification	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the di	scipli	ne (en)	For	nal modelling of concurrent processes / Modelarea formala				
(ro)			a pi	a proceselor concurente				
2.2 Course coordin	ator		Lect. Phd. Adrian Sterca					
2.3 Seminar coordinator		Lect. Phd. Adrian Sterca						
2.4. Year of study	2	2.5 Semester	3	2.6. Type of	Е	2.7 Type of	Compulsory	
				evaluation		discipline		
2.8 Code of the		MME8094						
discipline								

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 2 pr
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:				·	hours
Learning using manual, course suppor	t, bił	bliography, course note	S		20
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					35
Tutorship					
Evaluations					
Other activities:					0
3.7 Total individual study hours105					
3.8 Total hours per semester175					
3.9 Number of ECTS credits 7					

4. Prerequisites (if necessary)

4.1. curriculum	•	Distributed operating systems, Concurrent and distributed
		programming
4.2. competencies	•	Concurrent and distributed programming

5. Conditions (if necessary)

5.1. for the course	Class room with a video projector device
5.2. for the seminar /lab	•
activities	

6. Specific competencies acquired

Professional competencies	Mathematical tools for modelling concurrent systems
Transversal	The ability to mathematically model local or distributed transactional systems
competencies	The ability to mathematically model and analyse concurrent process systems

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	The course offers a strong theoretical approach in modelling concurrent and distributed systems
7.2 Specific objective of the discipline	The course presents several formalisms for describing concurrent processes

8. Content

8.1 Course	Teaching methods	Remarks
1. Serialization, concurrency and parallelism	Exposure:description,	
	explanation, examples,	
	discussion of case	
	studies	
2. Concurrent programming paradigms: shared	Exposure:description,	
memory, message passing, transactional	explanation, examples,	
memory	discussion of case	
	studies	
3. Concurrency models for transactional systems.	Exposure:description,	
The Page Model. The Object model	explanation, examples,	
	discussion of case	
	studies	
4. Concurrency control – serializability criteria	Exposure:description,	
(Page Model)	explanation, examples,	
	discussion of case	

	studies
5. Concurrency control – serializability criteria	Exposure:description,
(Page Model)	explanation, examples,
	discussion of case
	studies
6. Concurrency control algorithms (Page Model)	Exposure:description,
	explanation, examples,
	discussion of case
	studies
7. Multiversioning data	Exposure:description,
	explanation, examples,
	discussion of case
	studies
8. Concurrency control – serializability criteria	Exposure:description,
and algorithms (Object Model)	explanation, examples,
	discussion of case
	studies
9. Failure recovery	Exposure:description,
	explanation, examples,
	discussion of case
	studies
10. Concurrency control in distributed context	Exposure:description,
	explanation, examples,
	discussion of case
	studies
11. Process algebra I	Exposure:description,
	explanation, examples,
	discussion of case
	studies
12. Process algebra II	Exposure:description,
	explanation, examples,
	discussion of case
	studies
13. CCS – Calculus of Communicating Systems	Exposure:description,
	explanation, examples,
	discussion of case
	studies
14. Pi-Calculus	Exposure:description,
	explanation, examples,
	discussion of case
	studies

Bibliography

1. Weikum G. Vossen G. Transactional Information System: Theory, Algorithms, and Practice of

Concurrency Control and Recovery. Kaufmann Morgan Publ. 2002.

2. Reichel H. Formal Models of Concurrency, 2003

3. Robin Milner, Communication and Concurrency, Prentice Hall, International Series in Computer Science, ISBN 0-13-115007-3. 1989

4. Bertran Meyer, Concepts of concurrent computations, course, 2015

5. Robert Milner, A Calculus of Communicating Systems, Springer, 1986

6. Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, Jiri Srba, Reactive Systems: Modelling, Specification and Verification, 2005.

8.2 Seminar / laboratory	Teaching methods	Remarks		
1. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
2. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
3. Discussions related to the project or report's subject	Dialog, debate, case			
	studies, examples			
4. Report presentations	Dialog, debate, case			
	studies, examples			
5. Report presentations	Dialog, debate, case			
	studies, examples			
6. Project presentations	Dialog, debate, case			
	studies, examples			
7. Project presentations	Dialog, debate, case			
	studies, examples			
Bibliography				
Recent articles from ACM Digital Library and IEEE Xplore				

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course's contents is in the curiculla of major universities from abroad for master programs

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade (%)			
10.4 Course	Knowing the formalisms	Examination	30%			
	for describing concurrency					
	presented during the					
	course					
10.5 Seminar/lab activities	Ability to understand	Project	40%			
	recent research and relate	Research report	30%			
	it to theoretical concepts					
	presented at the course					
10.6 Minimum performance standards						
▶ In order to successfully pass this course, students must get at least 5 at each of the 3 examination						
tasks.						
tubito.						

Date	Signature of course coordinator	Signature of seminar coordinator
	Lect.PhD. Adrian Sterca	Lect.PhD. Adrian Sterca
Date of approval	Signature of	the head of department

.....

Prof. PhD. Anca Andreica