SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Computer Science
1.5 Study cycle	Master
1.6 Study programme / Qualification	Distributed Systems in Internet

2. Information regarding the discipline

2.1 Name of the discipline				Modular Arithmetics	and	Cryptograph	y
2.2 Course coordinator				Prof.PhD. Septimiu Crivei			
2.3 Seminar coordinator				Prof.PhD. Septimiu Crivei			
2.4. Year of	1	2.5	1	2.6. Type of	E	2.7 Type of	DC
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1	
3.4 Total hours in the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laboratory	14	
Time allotment:						
Learning using manual, course sup	port, b	oibliography, course note	es		28	
Additional documentation (in librar	ries, o	n electronic platforms, f	ield d	ocumentation)	28	
Preparation for seminars/labs, home	ework	, papers, portfolios and	essays	S	28	
Tutorship						
Evaluations					14	
Other activities:					0	
3.7 Total individual study hours 108						
3.8 Total hours 150						
per semester						
3.9 Number of 6						
ECTS credits						

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	

5. Conditions (if necessary)

5.1. for the course	
5.2. for the seminar /lab	
activities	

6. Specific competencies acquired

	• •
ional	 Understanding and use of basic algorithms and mathematical concepts related to cryptography Ability to understand and approach problems and projects of information security
Professional competencies	
	☐ Ability to work independently and/or in a team in order to solve problems and realize projects
les jes	in defined professional contexts
Transversal competencies	
11 S	

7. Objectives of the discipline (outcome of the acquired competencies)

•	1 '
7.1 General objective of the	☐ Study of the main algorithms in cryptography
discipline	
7.2 Specific objective of the	☐ Implementation and use of algorithms in cryptographic
discipline	applications

8. Content

8.1 Course	Teaching methods	Remarks
1. Algorithm complexity, modular arithmetics	exposition, algorithmization	
2. Primality and factorization	exposition, algorithmization	
3. Finite fields and discrete logarithms	exposition, algorithmization	
4. Classical cryptography	exposition, algorithmization	
5. DES, AES	exposition, algorithmization	
6. Stream ciphers	exposition, algorithmization	
7. Block ciphers	exposition, algorithmization	
8. RSA cryptosystem	exposition, algorithmization	
9. ElGamal cryptosystem	exposition, algorithmization	
10. Hash functions	exposition, algorithmization	
11. Digital signatures	exposition, algorithmization	
12. Key-related protocols	exposition, algorithmization	
13. Practical aspects	exposition, algorithmization	
14. Quantum cryptography	exposition, algorithmization	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

8.2 Seminar / laboratory		Teaching methods	Remarks
	1. Algorithm complexity, modular arithmetics	problematization, exercise	

2. Primality and factorization	problematization, exercise
3. Finite fields and discrete logarithms	problematization, exercise
4. Classical cryptography	problematization, exercise
5. DES, AES	problematization, exercise
6. Stream ciphers	problematization, exercise
7. Block ciphers	problematization, exercise
8. RSA cryptosystem	problematization, exercise
9. ElGamal cryptosystem	problematization, exercise
10. Hash functions	problematization, exercise
11. Digital signatures	problematization, exercise
12. Key-related protocols	problematization, exercise
13. Practical aspects	problematization, exercise
14. Quantum cryptography	problematization, exercise

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The content is directed towards applications of cryptography. The topic is present in many master
programs from other universities and has special interest for prospective employers.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the			
			grade			
10.4 Course	Use of basic concepts in examples	Presentation	1/3			
10.5 Seminar/lab	Problem solving, project presentation	Test, project	2/3			
10.6 Minimum performance standards						
☐ Grade 5						

Date Signature of course coordinator Signature of seminar coordinator 22.04.2022 Prof.PhD. Septimiu CRIVEI Prof.PhD. Septimiu CRIVEI

Date of approval Signature of the head of department

Prof.PhD. Octavian AGRATINI