SYLLABUS

1. Information regarding the programme

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics

2. Information regarding the discipline

2.1 Name of the	e disc	cipline]	Public-Key Cryptography				
2.2 Course coor	rdina	tor	Prof.PhD. Septimiu Crivei					
2.3 Seminar co	ordin	ator]	Prof.PhD. Septimiu C	rivei			
2.4. Year of	2	2.5 Semester	3	2.6. Type of	VP	2.7 Type of	Optionala (DS)	
study				evaluation		discipline		

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support,	bibli	ography, course notes			16
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					16
Tutorship					14
Evaluations					3
Other activities:					0
3.7 Total individual study hours 69					
3.8 Total hours per semester 125					
3.9 Number of ECTS credits 5					

4. Prerequisites (if necessary)

4.1. curriculum		
4.2. competencies		
5. Conditions (if necessary)		
5.1. for the course		

5.2. for the seminar /lab activities

6. Specific competencies acquired

C3.3 Use of computer science and mathematical models and tools for solving specific problems in the application field

competencies	□ CT2 Efficient fulfillment of organized activities in an inter-disciplinary group and development of empathic abilities of inter-personal communication, relationship and collaboration with various groups
[ransversal	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the	☐ To present mathematical algorithms used in public-key
3	
discipline	cryptography.
7.2 Considire abinative of the	Newshorth queties and also has also with measured by
7.2 Specific objective of the	□ Number-theoretic and algebra algorithms will be
discipline	studied and implemented in projects.
discipinie	studied and implemented in projects.

8. Content

8.1 Course	Teaching methods	Remark
		S
 Classical cryptography. Examples 	interactive exposure, explanation,	
	didactical demonstration	
2. Algorithm complexity, elements of number	interactive exposure, explanation,	
theory	didactical demonstration	
3. Public-key cryptography. RSA	interactive exposure, explanation,	
	didactical demonstration	
4. Algorithms for testing primality	interactive exposure, explanation,	
	didactical demonstration	
5. Algorithms for factoring integers	interactive exposure, explanation,	
	didactical demonstration	
6. Quadratic residues. Rabin public-key	interactive exposure, explanation,	
cryptosystem	didactical demonstration	
7. Polynomials. Finite fields	interactive exposure, explanation,	
	didactical demonstration	
8. ElGamal public-key cryptosystem	interactive exposure, explanation,	
	didactical demonstration	
9. Algorithms for computing discrete	interactive exposure, explanation,	
logarithms	didactical demonstration	
10. Factorization of polynomials: Berlekamp's	interactive exposure, explanation,	
algortihm	didactical demonstration	
11. Digital signatures	interactive exposure, explanation,	
	didactical demonstration	
12. Key-related protocols	interactive exposure, explanation,	
	didactical demonstration	
13. Practical aspects of public-key	interactive exposure, explanation,	
cryptosystems	didactical demonstration	
14. Eliptic-curve cryptography	interactive exposure, explanation,	
	didactical demonstration	

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca

Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]						
5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.						
8.2 Laboratory	Teaching methods	Remarks				
Classical cryptography	interactive exposure, algorithmization	2 weeks				
2. Algorithm complexity	interactive exposure, algorithmization	2 weeks				
3. Modular arithmetics	interactive exposure, algorithmization	2 weeks				
4. Algorithms for testing primality	interactive exposure, algorithmization	2 weeks				
5. Algorithms for factoring integers	interactive exposure, algorithmization	2 weeks				
6. Public-key cryptography	interactive exposure, algorithmization	2 weeks				
7. Practical aspects of public-key cryptosystems	interactive exposure, algorithmization	2 weeks				

Bibliography

- 1. M. Cozzens, S.J. Miller, The Mathematics of Encryption: An Elementary Introduction, American Mathematical Society, 2013.
- 2. S. Crivei, A. Marcus, C. Sacarea, C. Szanto, Computational algebra with applications to coding theory and cryptography, Editura EFES, Cluj-Napoca, 2006.
- 3. C. Gherghe, D. Popescu, Criptografie. Coduri. Algoritmi, Editura Univ. Bucuresti, 2005.
- 4. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997. [http://www.cacr.math.uwaterloo.ca/hac]
- 5. C. Paar, J. Pelzl, Understanding Cryptography, Springer, 2009.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

	The contents is directed towards practical applications of public-key cryptography. The
to	pic is present in the computer science study programme of all major universities.

10. Evaluation

2012100000000					
Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Share in the		
		methods	grade (%)		
10.4 Course	Use of basic concepts in examples	Assessments	50		
10.5 Lab	Implement course concepts and	Practical examination	50		
	algorithms				
10.6 Minimum performance standards					
Grade 5					

Date Signature of course coordinator Signature of seminar coordinator 22.04.2022 Prof.PhD. Septimiu CRIVEI Prof.PhD. Septimiu CRIVEI

Date of approval

Signature of the head of department Prof.PhD. Octavian AGRATINI