SYLLABUS

${\bf 1.} \ {\bf Information} \ {\bf regarding} \ {\bf the} \ {\bf programme}$

1.1 Higher education institution	Babeş-Bolyai University Cluj-Napoca
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Master
1.6 Study programme /	Modern Methods in Mathematics Teaching
Qualification	

2. Information regarding the discipline

2.1 Name of the di	scip	oline	To	pics in Mathemati	cal Analysis	s III	
2.2 Course coordin	Course coordinator Prof. Nicolae Popovici, Ph.D. habil.						
2.3 Seminar coord	inat	or	Pr	of. Nicolae Popov	e Popovici, Ph.D. habil.		
2.4. Year of study	2	2.5 Semester	4	2.6. Type of	Exam	2.7 Type of discipline	Optional
				evaluation			

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	3	Of which: 3.2 course	2	3.3 seminar/laboratory	1
3.4 Total hours in the curriculum	36	Of which: 3.5 course	24	3.6 seminar/laboratory	12
Time allotment:					
Learning using manual, course supp	ort, bi	bliography, course not	es		56
Additional documentation (in libraries, on electronic platforms, field documentation)					48
Preparation for seminars/labs, homework, papers, portfolios and essays					40
Tutorship					10
Evaluations					35
Other activities					-
3.7 Total individual study hours 189					
3.8 Total hours per semester 225					
3.9 Number of ECTS credits 9					

4. Prerequisites (if necessary)

4.1. curriculum	Mathematical Analysis 1 (on R)	
	 Mathematical Analysis 2 (Calculus on Rⁿ) 	
4.2. competencies	Ability to use abstract notions, theoretical results and practical	
	methods of Mathematical Analysis.	

5. Conditions (if necessary)

5.1. for the course	Lecture hall equipped with blackboard and beamer
5.2. for the seminar /lab activities	Classroom equipped with blackboard

6. Specific competencies acquired

Professional competencies	To use appropriate theoretical results and methods for solving different classes of mathematical analysis problems.
Transversal competencies	To apply rigorous and efficient work rules, by adopting a responsible attitude towards the scientific and didactic activities. To develop the own creative potential in specific areas, following the professional ethical norms and principles.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	Enhanced understanding of some special topics in Mathematical Analysis useful to high-school teachers.
7.2 Specific objective of the discipline	Students should acquire solving skills for challenging problems, by an indepth study of key notions and fundamental theoretical results.

8. Content

8.1 Course	Teaching methods	Remarks
1. Sequences of (extended) real numbers; limit	Direct instruction, mathematical	
points; limit inferior and limit superior.	proof, exemplification	
2. Sequences defined by linear recurrences with	Direct instruction, mathematical	
constant coefficients; special classes of sequences	proof, exemplification	
defined by nonlinear recurrences.		
3. Toeplitz theorem and some of its consequences	Direct instruction, mathematical	
(Stolz-Cesaro and Cauchy theorems).	proof, exemplification	
4. Series of real numbers: Cauchy and Riemann	Direct instruction, mathematical	
theorems concerning the permutations of absolutely	proof, exemplification	
convergent and of conditionally convergent series,		
respectively.		
5. Abel, Cauchy and Mertens theorems concerning	Direct instruction, mathematical	
the product of two series.	proof, exemplification	
6. Semi-continuous functions; characterizations of	Direct instruction, mathematical	
semi-continuity by means of the	proof, exemplification	
epigraph/hypograph, level sets, and sequences.		
7. Uniformly continuous functions and their	Direct instruction, mathematical	
sequential characterization; Lipschitz and Hölder	proof, exemplification	
continuous functions.		
8. The Darboux property and antiderivability.	Direct instruction, mathematical	
	proof, exemplification	
9. Riemann integrable functions.	Direct instruction, mathematical	
	proof, exemplification	
10. Convex functions (one variable);	Direct instruction, mathematical	

characterizations and regularity properties (one	proof, exemplification	
sided derivability, continuity).		
11. Characterizations of convexity by means of	Direct instruction, mathematical	
tangent lines, first and second order derivatives.	proof, exemplification	
12. Convex functions (several variables) and their	Direct instruction, mathematical	
characterizations; subdifferențiability of convex	proof, exemplification	
functions.		

Bibliography

- 1. BRECKNER, B.E., POPOVICI, N.: Convexity and Optimization. An Introduction. Editura EFES, Cluj-Napoca, 2006.
- 2. BRECKNER, W.W., TRIF, T.: Convex Functions and Related Functional Equations. Selected Topics. Presa Universitară Clujeană, 2008.
- 3. COBZAŞ, Şt.: Analiză matematică (Calcul diferențial). Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 4. MARUSCIAC, I: Analiză matematică. Partea II. Universitatea "Babeș-Bolyai" Cluj-Napoca, 1983.
- 5. MEGAN, M.: Bazele analizei matematice. Vol. I și II, Editura EUROBIT, Timișoara, 1997. Vol. III, Editura EUROBIT, Timișoara, 1998.
- 6. NICOLESCU, M.: Analiză matematică. Vol. II, Editura Tehnică, București, 1958.
- 7. ROBERTS, A.W., VARBERG, D.E.: Convex Functions. Academic Press, 1973.
- 8. RUDIN, W.: Principles of Mathematical Analysis. 2nd Edition, McGraw-Hill, New York, 1964.
- 9. SIREȚCHI, Gh.: Calcul diferențial și integral. Vol. 1: Noțiuni fundamentale. Editura Științifică și Enciclopedică, București, 1985.

		Remarks
8.2 Seminar / laboratory	Teaching methods	
1. Sequences: limit points; limit inferior and limit	Problem-based instruction,	
superior; convergence.	debate, mathematical proofs	
2. Sequence for which the set of limit points is an	Problem-based instruction,	
interval	debate, mathematical proofs	
3. Sequences defined by linear recurrences.	Problem-based instruction,	
	debate, mathematical proofs	
4. Sequences defined by nonlinear recurrences.	Problem-based instruction,	
	debate, mathematical proofs	
5. Applications of Toeplitz and Stolz-Cesaro	Problem-based instruction,	
theorems.	debate, mathematical proofs	
6. Remarkable series of real numbers.	Problem-based instruction,	
	debate, mathematical proofs	
7. Wallis and Stirling formulae.	Problem-based instruction,	
	debate, mathematical proofs	
8. Taylor series.	Problem-based instruction,	
	debate, mathematical proofs	
9. Semicontinous functions.	Problem-based instruction,	
	debate, mathematical proofs	
10. Uniform continuity; Lipschitz continuous	Problem-based instruction,	
functions.	debate, mathematical proofs	
11. The Darboux property and antiderivability.	Problem-based instruction,	
	debate, mathematical proofs	
12. Convex functions; applications to inequalities.	Problem-based instruction,	
	debate, mathematical proofs	
Ribliography		

Bibliography

1. APOSTOL, T. M.: Modular functions and Dirichlet series in number theory. Springer-Verlag, New

- York, 1990.
- 2. BORWEIN, J.M., LEWIS, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples. CMS Books in Mathematics, Springer, 2000.
- 3. BRECKNER, B.E., POPOVICI, N.: Probleme de analiză convexă în Rⁿ. Casa Cărții de Știință, Cluj-Napoca, 2003.
- 4. BUCUR, G., CÂMPU, E., GĂINĂ, S.: Culegere de probleme de calcul diferențial și integral. Vol. II, Editura Tehnică, București, 1966. Vol. III, Editura Tehnică, București, 1967.
- 5. COBZAŞ, Şt.: Analiză matematică (Calcul diferențial). Presa Universitară Clujeană, Cluj-Napoca, 1997.
- 6. RĂDULESCU, S., RĂDULESCU, M.: Teoreme și probleme de analiză matematică. Editura Didactică și Pedagogică, București, 1982.
- 7. SIREȚCHI, Gh.: Calcul diferențial și integral. Vol. 2: Exerciții, Editura Științifică și Enciclopedică, București, 1985
- 8. TRIF, T.: Probleme de calcul diferențial și integral în Rⁿ. Casa Cărții de Știință, Cluj-Napoca, 2003.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

The course ensures a solid theoretical background, according to national and international standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the		
			grade (%)		
10.4 Course	- Knowledge of	Written exam	75%		
	theoretical concepts and				
	theoretical results;				
	- Ability to solve				
	practical exercises and				
	theoretical problems				
10.5 Seminar/lab	Active participation to	Continuous evaluation	25%		
activities	tutorials (problem				
	solving).				
10.6 Minimum performance standards					
The final grade should be greater than or equal to 5.					

Date	Signature of course coordinator	Signature of seminar coordinator
29.04.2022	Prof. Nicolae Popovici, Ph.D. Habil.	Prof. Nicolae Popovici, Ph.D. Habil.

Date of approval Signature of the head of department

29.04.2022 Prof. Octavian Agratini, Ph.D.