SYLLABUS

1. Information regarding the programme					
1.1 Higher education	Babes Bolyai University				
institution					
1.2 Faculty	Faculty of Mathematics and Computer Science				
1.3 Department	Department of Computer Science				
1.4 Field of study	Computer Science				
1.5 Study cycle	Bachelor				
1.6 Study programme /	Mathematics and Computer Science				
Qualification					

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the disciplineSoftware engineering							
2.2 Course coordinator conf. dr. Dan CHIOREAN							
2.3 Seminar coordinator conf. dr. Dan CHIOREAN							
2.4. Year of	3	2.5	6	2.6. Type of	Ε	2.7 Type of	Compulsory
study		Semester		evaluation		discipline	

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1S +
				seminar/laboratory	1L
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	1/1
				seminar/laboratory	
Time allotment:					hours
Learning using manual, course support, bibliography, course notes					27
Additional documentation (in libraries, on electronic platforms, field documentation)					14
Preparation for seminars/labs, homework, papers, portfolios and essays					23
Tutorship					10
Evaluations					20
Other activities:					
3.7 Total individual study hours 94					

5.7 Total marvidual study nouis	77
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	Object-Oriented Programming
4.2. competencies	• Average programming skills in a high level object-oriented
	programming language

5. Conditions (if necessary)

5.1. for the course	• beamer
5.2. for the seminar /lab	• Laboratory with computers; high level programming language
activities	environment (Java environments or .NET and a UML CASE tool)

6. Specific competencies acquired

	or species		
	I S	•	C2.1 & C2.2 - Knowledge on modeling, software development methodologies, software
	na cie		testing, project management
	sio ten	•	C2.3 - Ability to work independently and in a team in order to develop software complying
	Professional competencies		with industrial standards.
	Pro om	•	C2.5 - Understanding the role of different artifacts used in the process of software
	- 0		development and acquiring the ability of realizing and using these artifacts
		•	CT1 - Ability to create different models (analysis, design, implementation, testing) using the
	iles		UML
	rsa	•	CT2 - Ability to create software beginning with model construction, continuing with model
	sve ete		verification and model transformation in code, realizing and using testing models
	Transversal competencies	•	CT3 - Ability to use a software methodology to produce quality software from analyzing
	Tr col		software requirements to code generation and software testing
- 1			

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand software production life cycle Improved skills on developing software
7.2 Specific objective of the discipline	 Understand and work with the concepts of: model, model properties. Understanding the role of abstraction in producing models. Understand the differences between modeling languages and modeling methodologies. Understand and work with the most important UML concepts used in constructing software models

8. Content

ð. Content		
8.1 Course	Teaching methods	Remarks
1. Introduction to Software Engineering	Exposure: description, explanation, examples, discussion of case studies	
2. Using UML to specify models	Exposure: description, explanation, examples, discussion of case studies	
3. Requirements Elicitation	Exposure: description, explanation, examples, discussion of case studies	
4. Analysis	Exposure: description, explanation, examples, discussion of case studies	
5. System Design - Decomposing the System	Exposure: description, explanation, examples, discussion of case studies	
6. System Design - Addressing Design Goals	Exposure: description, explanation, examples, discussion of case	

	studies	
7. Object Design - Reusing Pattern Solutions		
7. Object Design - Reusing Pattern Solutions	Exposure: description, explanation, examples, discussion of case studies	
8. Object Design - Specifying Interfaces	Exposure: description, explanation, examples, discussion of case studies	
9. Mapping Models to Code	Exposure: description, explanation, examples, discussion of case studies	
10. Testing	Exposure: description, explanation, examples, discussion of case studies	
11. Rationale & Configuration Management	Exposure: description, explanation, examples, discussion of case studies	
12. Project Management	Exposure: description, explanation, examples, discussion of case studies	
13. Software Life Cycle	Exposure: description, explanation, examples, discussion of case studies	
14. Methodologies	Exposure: description, explanation, examples, discussion of case studies	
Bibliography 1. Bernd Bruegge, Allen Dutoit - Object-Oriented Java - 3rd Edition - Prentice Hall 2009 2. Erich Gamma, Richard Helm, Ralph Johnson, J 1996		
 Ian Sommerville - Software Engineering - 8th Grady Booch, James Rumbaugh, Ivar Jacobsor V.2.0 - Addison Wesley, 2005 Martin Fowler et al Refactoring - Improving 1999 	n - The Unified Modeling L	anguage User Guide,
8.2 Seminar	Teaching methods	Remarks
1. Use cases diagrams, concepts, relationships,	Explanation, Dialogue,	The seminar is

8.2 Seminar	Teaching methods	Remarks
1. Use cases diagrams, concepts, relationships,	Explanation, Dialogue,	The seminar is
representation, the structure of a use case	debate, case studies,	structured as 2 hours
description document	examples, proofs	classes at each two
		weeks period
2. Describing structural models using class	Explanation, Dialogue,	
diagrams - concepts, relationships,	debate, case studies,	
representation, filtering the information	examples, proofs	
3. Describing behavioral models using sequence	Explanation, Dialogue,	
and collaboration diagrams - the concepts used	debate, case studies,	
in these diagrams, the equivalence of these	examples, proofs	
diagrams		

4. Describing behavioral models using state	Explanation, Dialogue,	
transition diagrams. Generating code from	debate, case studies,	
state class diagrams	examples, proofs	
5. Using assertions to specify model correctness	Explanation, Dialogue,	
against different kind of rules. Code	debate, case studies,	
generation for UML models	examples, proofs	
6. The role of pre-post-conditions in specifying	Explanation, Dialogue,	
component's interface - design by contract	debate, case studies,	
	examples, proofs	
7. Testing patterns	Explanation, Dialogue,	
61	debate, case studies,	
	examples, proofs	
Bibliography		
1. Martin Fowler - UML Distilled - Addison-Wes	lev. 2003	
 Bruce Eckel - Thinking in Java 4th edition - Pr 		
3. Kent Beck - Test Driven Development - Addis		
5. Refit Deek Test Driven Development Addis	on westey, 2002	
8.2 Laboratory	Teaching methods	Remarks
1. Agile Software Methodologies - planning the	Explanation, dialogue,	The laboratory is
software development phases. Risk analysis in	case studies	structured as 2 hours
software development, the role of incremental		classes at each two
and iterative development. Analysis of small		weeks period
software applications that each student has to		weeks period
analyse, design, implement and test.		
2. Using an UML CASE tool and text editors to	Explanation, dialogue,	
realize the functional model of each individual	case studies	
problem	case studies	
3. Using an UML CASE tool to construct The	Explanation, dialogue,	
requirement model of each individual problem	case studies	
4. Constructing the Design model using an UML	Explanation, dialogue,	
CASE tool	case studies	
5. Realizing the Implementation model using	Testing data discussion,	
both an UML CASE tool and an appropriate	evaluation	
IDE		
6. Testing the application realized	Testing data discussion, evaluation	
7. Realizing the User manual and delivering the	Explanation, dialogue,	
	/ 1º	1
application Bibliography	case studies	

1. Kenneth S. Rubin - Essential Scrum - A Practical Guide to the Most Popular Agile Process -Addison-Wesley 2012

- 2. Philippe B. Kruchten The Rational Unified Process: An Introduction 3rd Edition Addison -Wesley 2003
- 3. Per Kroll, Philippe Kruchten and Grady Booch The Rational Unified Process Made Easy: A Practitioner's Guide to the RUP - Addison-Wesley 2003

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curricula Recommendations for Computer Science Studies; ٠
- The course exists in the studying program of all major universities in Romania and abroad; •
- The content of the course contains knowledge mandatory for any IT specialist working in a software company

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic concepts & SE principles; knowledge of UML key concepts knowledge of modeling methodologies 	Written exam	60%
10.5 Seminar/lab activities	 be able to implement acknowledged knowledge in producing software be able to produce and use modeling artifacts 	 Practical examination documentation continuous observations 	40%

Date

Signature of course coordinator

Signature of seminar coordinator

conf. dr. Dan CHIOREAN

African

7 May 2016

conf. dr. Dan CHIOREAN

African

Date of approval

Signature of the head of department

prof. dr. Anca ANDREICA