SYLLABUS

8 8	
1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
-	
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1. There of study	
1.5 Study cycle	Bachelor
1.5 Study Cycle	
1.6 Study programme /	Mathematics and Computer Science in English
Qualification	
Zuunnon	

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the d	iscipli	ne (en)	Formal Languages and Compiler Design				
(ro)							
2.2 Course coordi	nator		Pro	of.PhD. Simona Moto	ogna		
2.3 Seminar coordinator			Prof.PhD. Simona Motogna				
2.4. Year of study	3	2.5 Semester	5	2.6. Type of	E	2.7 Type of	Compulsory
				evaluation		discipline	
2.8 Code of the		MLE5023					
discipline							

3. Total estimated time (hours/semester of didactic activities)

or i otal estimatea time (nouis/senie		i alaache ach (hies)			
3.1 Hours per week	4	Of which: 3.2 course	2	3.3	1 sem
				seminar/laboratory	+ 11ab
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:		•	•		hours
Learning using manual, course suppo	rt, bił	oliography, course notes	8		7
Additional documentation (in librarie	s, on	electronic platforms, fie	eld do	cumentation)	4
Preparation for seminars/labs, homev	vork, j	papers, portfolios and e	ssays		6
Tutorship					1
Evaluations					1
Other activities:					-
3.7 Total individual study hours		19			•
3.8 Total hours per semester		75			

3.8 Total hours per semester	/5
3.9 Number of ECTS credits	3

4. Prerequisites (if necessary)

4.1. curriculum	•	Data Structures and Algorithms
-----------------	---	--------------------------------

4 0	
47	competencies
	competencies

• Average programming skills in a high level programming language

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab	Laboratory with computers; high level programming language environment
activities	(.NET or any Java environement a.s.o.)

6. Specific competencies acquired

Professional competencies	 C4.1 Definition of concepts and basic principles of computer science, and their mathematical models and theories C4.2 Interpretation of mathematical and computer science models C4.5 Adoption of formal models in specific applications from different domains
Transversal competencies	CT1 Apply rules to: organized and efficient work, responsabilities of didactical and scientifical activities and creative capitalization of own potential, while respecting principles and rules for professional ethics CT3 Use efficient methods and techniques for learning, knowledge gaining, and research and develop capabilities for capitalization of knowledge, accomodation to society requirements and communication in English

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand compiler design and to implement compiler techniques Improved programming skills
7.2 Specific objective of the discipline	 Improved programming skills Acquire knowledge about back-end of a compiler Understand and work with formal languages concepts: Chomsky hierarchy; regular grammars, finite automata and the equivalence between them; context-free grammars, push-down automata and their equivalence Understand and work with compilers concepts: scanning, parsing

8. Content

8.1 Course	Teaching methods	Remarks
1. General Structure of a compiler. Compiler phases	Exposure: description, explanation, examples, discussion of case studies	
2. Scanning (Lexical Analysis)	Exposure: description, explanation, examples, discussion of case studies	
3. Introductory notions of formal languages. Grammars and Finite Automata	Exposure: description, explanation, examples, debate, dialogue	
4. Regular languages, regular expressions,	Exposure: description,	

equivalence between finite automata, regular grammars and regular expressions. Pumping lemma	explanation, examples, proofs
5. Context-free grammars, syntax tree	Exposure: description, explanation, examples, discussion of case studies
6. Parsing: general notions, classification.	Exposure: description, explanation, examples, discussion of case studies
7. Recursive-descendant parser	Exposure: description, explanation, examples, discussion of case studies
8. LL(1) parser	Exposure: description, explanation, examples, discussion of case studies
9. LR(k) Parsing method. LR(0) parser	Exposure: description, explanation, examples, discussion of case studies
10. SLR, LR(1), LALR parser	Exposure: description, explanation, examples, discussion of case studies
11. Scanner generator (lex); Parser generators (yacc)	Exposure: description, examples, discussion of case studies, live demo
12. Attribute grammars; generation of intermediary code	Exposure: description, explanation, examples, discussion of case studies
13. Code optimization and object code generation	Exposure: description, explanation, examples, discussion of case studies
14. Push-down automata and Turing machines	Exposure: description, explanation, examples, discussion of case studies

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. D. GRIES - Compiler construction for digital computers,, John Wiley, New York, 1971.

4. MOTOGNA, S. - Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

5. SIPSER, M., Introduction to the theory of computation, PWS Pulb. Co., 1997

6. CSÖRNYEI ZOLTÁN, Bevezetés a fordítóprogramok elméletébe, I, II., ELTE, Budapest, 1996

7. L.D. SERBANATI - Limbaje de programare si compilatoare, Ed. Academiei RSR, 1987.

8. CSÖRNYEI ZOLTÁN, Fordítási algoritmusok, Erdélyi Tankönyvtanács, Kolozsvár, 2000.

9. DEMETROVICS JÁNOS-DENEV, J.-PAVLOV, R., A számítástudomány matematikai alapjai, Nemzeti Tankönyvkiadó,

0. GRUNE, DICK - BAL, H JACOBS, C LANGENDOEN, K.: N .2 Seminar	Teaching methods	Remarks
 Specification of a programming language; BNF notation 	Explanation, dialogue, case studies	
 Grammars; language generated by a grammar; grammar corresponding to a language 	Dialogue, debate, case studies, examples, proof	
3. Finite automata: language generated by a FA; FA corresponding to a language	Dialogue, debate, case studies, examples, proof	
 Transformations: finite automata – regular grammars – regular expressions 	Dialogue, debate, case studies, examples, proof	
 Context free grammars; descendent recursive parser 	Dialogue, debate, case studies, examples, proof	
6. LL(1) parser	Dialogue, debate, case studies, examples, proof	
7. LR(0) parsers	Dialogue, debate, case studies, examples, proof	
8.3 Laboratory	Teaching methods	Remarks
 Task 1: Specify a mini-language and implement scanner 1.1: Mini language specification (BNF notation) 	Explanation, dialogue, case studies	Each laboratory assignment will be developed during lab hours
 Task 1: Specify a mini-language and implement scanner Writing a small program in the minilanguage 	Explanation, dialogue, case studies	
 Task 1: Specify a mini-language and implement scanner Use lex for scanner 	Explanation, dialogue, case studies	
4. Task 1: Specify a mini-language and implement scanner1.4: Determine lexical tokens using FA	Testing data discussion, case studies, evaluation	
5. Task 2: Parsing: 2.1: Define grammar for specified syntactical structures	Explanation, dialogue, case studies	
6. Task 2: Parsing 2.2: Use yacc for parsing	Testing data discussion, case studies	
7. Present Task 2	Testing data discussion, evaluation	

Bibliography

1. A.V. AHO, D.J. ULLMAN - Principles of computer design, Addison-Wesley, 1978.

2. A.V. AHO, D.J. ULLMAN - The theory of parsing, translation and compiling, Prentice-Hall, Engl. Cliffs., N.J., 1972, 1973.

3. MOTOGNA, S. - Metode de proiectare a compilatoarelor, Ed. Albastra, 2006

4. G. MOLDOVAN, V. CIOBAN, M. LUPEA - Limbaje formale si automate. Culegere de probleme, Univ. Babes-Bolyai, Cluj-Napoca, 1996.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course respects the IEEE and ACM Curriculla Recommendations for Computer Science studies;
- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is considered the software companies as important for average programming skills

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)	
10.4 Course	 know the basic principle of the domain; apply the course concepts problem solving 	Written exam	60%	
10.5 Seminar and lab activities	 be able to apply algorithms, understand examples - problem solving 	problems solved - homeworks delivered - continuous observations during semester	10%	
	 be able to implement course concepts and algorithms apply techniques for different classes of programming languages 	-Practical examination during all semester -documentation - portofolio -continous observations	30%	
10.6 Minimum performance standards				
 Attend 75% of seminar activities during semester AND attend 90% of lab activities during semester At least grade 5 (from a scale of 1 to 10) at written exam and at least grade 6 at laboratory work. 				

Date	Signature of course coordinator	Signature of seminar coordinator
27.04.2022	Prof.PhD. Simona MOTOGNA	Prof.PhD. Simona MOTOGNA

Date of approval

Signature of the head of department

.....

Prof.dr. Laura Dioșan