SYLLABUS

1.1 Higher education institution	Babeş-Bolyai University
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Department of Computer Science
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme / Qualification	Mathematics and Computer Science - English

1. Information regarding the programme

2. Information regarding the discipline

2.1 Name of the dis (ro)	scipline	(en)	Operating Systems Sisteme de Operare				
2.2 Course coordinate	ator		Assoc. Prof. PhD. Sanda-Maria Avram				
2.3 Seminar coordi	nator		Assoc. Prof. PhD. Sanda-Maria Avram				
2.4. Year of study	2	2.5 Semester	42.6. Type of evaluationE2.7 Type of disciplinemanda				mandatory
2.8 Code of the discipline MLE5007						1	! !

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3 seminar/laboratory	2	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6 seminar/laboratory	28	
Time allotment:						
Learning using manual, course support, bibliography, course notes						
Additional documentation (in libraries, on electronic platforms, field documentation)						
Preparation for seminars/labs, homework, papers, portfolios and essays						
Tutorship						
Evaluations						
Other activities:						
3.7 Total individual study hours 44						
3.8 Total hours per semester 100						

3.8 Total hours per semester1003.9 Number of ECTS credits4

4. Prerequisites (if necessary)

4.1. curriculum	
4.2. competencies	• Basic programming skills in C standard.

5. Conditions (if necessary)

5.1. for the course	• A lecture class with video projector.
5.2. for the seminar /lab activities	• Laboratory with computers connected to the Intenet and UNIX/ LINUX-like operating systems or access to an UNIX/LINUX cerver.

6. Specific competencies acquired

	Identify basic concepts and models for computer systems.
Professional competencies	Identify and explain the basic architecture for the organization and management systems.
	Use techniques for installation, configuration and systems management.
Transversal competencies	Applying organized and efficient work rules, the responsible attitudes of the teaching-scientific, for harnessing creative potential, the principles and rules of professional ethics.
	The use of effective learning methods and techniques, information, research and capacity to exploit the knowledge to adapt to a dynamic society and communication in Romanian and in an international language.

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	• Uptake of the leraner on the main concepts underlying operating systems.
7.2 Specific objective of the discipline	 Acquiring main facilities offered by the UNIX operating systems. Acquiring skills in shell programming and processing text files under UNIX. Management of multitasking applications using UNIX processes.

8. Content

8.1 Course	Teaching methods	Remarks

 1-3 Unix OS: external interfaces The general structure of an operating system Regular expressions to specify files; generic specification Filters; general principles: sort, awk, sed, grep Unix Shells: sh, csh, ksh, bash; overview Useful Shell commands and external processes management Shell programming; The structure of directories in Unix system The mount-ing concept Symbolic and hard links 	Exposure: description, explanation, examples, discussion of case studies	
 4-7 Unix operating system: system calls, internal structures Files and processes under Unix I / O using handle: open, close, lseek, read, write, after, dup2 File Protection Processes in Unix; process structure Calls process management system: fork, wait, exit, exec * Communications between processes: pipe, popen, FIFO POSIX Threads 	Exposure: description, explanation, examples, discussion of case studies	
 8-9 Filesystems General management issues disk and file systems Planning disk access The internal structure of the disk and DOS file system; FAT The internal structure of the disk and file system Windows NT & 2000; NTFS mechanism, MFT file The internal structure of the disk and Unix file system; i-node mechanism 	Exposure: description, explanation, examples, discussion of case studies	

10-14 General Theory of operating systems	Exposure:	
- Types of computers and operating systems.	description,	
Classifications	explanation,	
- I/O Channel, multiple buffers.	examples, discussion	
Multiprogramming.	of case studies	
- General structure and functions of an operating		
system		
- The concept of process: specification,		
competition, semaphores, deadlock		
- Process Scheduling		
- Problems with memory management		
- Planning exchange between the internal memory		
and secondary		

Bibliography

In English:

1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.

Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.
 Stallings, W., Operating Systems: Internals and Design Principles, Pearson Education Limited,

4. Raymond, E.S., The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited,

USA, 2004.

5. Tanenbaum, A., Herbert, B., Modern Operating Systems, Pearson Education Limited, Essex, 2015.

In Romanian:

6. Boian, F., Vancea, A., Boian, R., Bufnea, D., Sterca, A., Cobarzan, C., Cojocar, D., Sisteme de operare, Ed. Risoprint, Cluj-Napoca, 2006.

8.2 Seminar / laboratory	Teaching methods	Remarks
1-2. Unix commands for working with files	Dialogue, debate, case studies, examples, proofs	
3. Shell 1	Dialogue, debate, case studies, examples, proofs	
4. sed and grep utilities	Dialogue, debate, case studies, examples, proofs	
5. awk utility	Dialogue, debate, case studies, examples, proofs	
6. shell Programs	Dialogue, debate, case studies, examples, proofs	

7-8. C programs; working with Unix files	Dialogue, debate, case studies, examples, proofs	
9. UNIX Processes	Dialogue, debate, case studies, examples, proofs	
10. Communications between Unix processes: pipe	Dialogue, debate, case studies, examples, proofs	
11. Communications between Unix processes: FIFO	Dialogue, debate, case studies, examples, proofs	
12. Unix-Threads	Dialogue, debate, case studies, examples, proofs	
13. Closing lab activities	Dialogue, debate, case studies, examples, proofs	
14. Practical exam	Dialogue, debate, case studies, examples, proofs	

Bibliography

In English:

1. Albing, C., Vossen, J.P., Newhman, C., bash Cookbook: Solutions and Examples for bash Users, O'Reilly, USA, 2007.

2. Kernighan, B.W., Dennis, R.M., The C Programming Language, Prentice Hall, Massachusetts, 2012.

3. **Raymond, E.S.,** The Art of UNIX Programming, Addison-Wesley, Pearson Education Limited, USA, 2004.

In Romanian:

4. **Boian, F., Vancea, A., Boian, R., Bufnea, D., Sterca, A., Cobarzan, C., Cojocar, D.,** Sisteme de operare, Ed. Risoprint, Cluj-Napoca, 2006.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- This course exists in the curriculum in all major universities in Romania and abroad.
- This course provides the basic knowledge that any administrator or developer must posses.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course			
	- know the basic principle of the domain	Final exam	20%
10.5 Seminar/lab activities	- application of these concepts in solving problems	Lab assignments	60%
	- writing shells and creating Unix processes	Practical exam	20%
10.6 Minimum performance standards			
➤ At least grade 5 (from a scale of 1 to 10) for all types of examination.			

Date Signature of course coordinator Signature of seminar coordinator

29.04.2021 Assoc.Prof.PhD. Sanda-Maria Avram

Date of approval

.....

Signature of the head of department

Prof. PhD. Laura DIOŞAN

Assoc.Prof.PhD. Sanda-Maria Avram