SYLLABUS

1. Information regarding the programme

11 Imormation regarding th	e programme
1.1 Higher education	Babes-Bolyai University Cluj-Napoca
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science (English) / Mathematician
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline (en)			Complements of geometry / Complemente de geometrie				
(ro)							
2.2 Course coordinator			Lect. dr. George Țurcaș				
2.3 Seminar coordinator		Lect. dr. George Ţurcaș					
2.4. Year of	II	2.5 Semester	4	2.6. Type of	VP	2.7 Type of	DS
study				evaluation		discipline	
2.8 Code of the		MLE0041			·		
discipline							

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	4	Of which: 3.2 course	2	3.3	2
				seminar/laboratory	
3.4 Total hours in the curriculum	56	Of which: 3.5 course	28	3.6	28
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					20
Additional documentation (in libraries, on electronic platforms, field documentation)					20
Preparation for seminars/labs, homework, papers, portfolios and essays					20
Tutorials				14	
Evaluations				10	
Other activities: homework				10	
2.7.T. + 11 11 1 + 1 1		0.4			

3.7 Total individual study hours	94
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	None necessary
4.2. competencies	•

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar	• Attendance to at least 75% of the seminars.

6. Specific competencies acquired

Professional competencies	•	The ability to identify concepts, theories and use of specific description language The ability to produce a mathematical model for a certain problem. Developing independent learning skills and teamwork for realising projects and solving complex problems.
Transversal competencies	•	Applying rigorous and efficient work rules, displaying a responsible attitude towards the scientific and educational and creative order to maximize their potential in specific situations with respect to the basic principles and norms of professional ethics

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Acquiring theoretical and practical knowledge necessary for understanding the principles and methods of plane geometry. Developing creative thinking and spatial orientation. Developing teaching skills.
7.2 Specific objective of the discipline	 At the end of the course, the students should be able to Correctly identify planar geometric figures and the connections between them. Combine several results and theorems such as Menelaus' or Cevas' to prove different results. Use geometric transformations such as homothethy and inversion to solve problems in geometry.

8. Content

8.1 Course	Teaching methods	Remarks
1. Menelaus' theorem and applications (1	Lecture, description,	
lecture)	exemplifications by	
	using multimedia	
	tools	
2. Ceva's theorem and applications (1 lecture)	Lecture, description,	
	exemplifications by	
	using multimedia	
	tools	
3. Metric problems in the triangle. Cosine	Lecture, description,	
theorem, Stewarts' theorem (2 lectures)	exemplifications by	
	using multimedia	
	tools	
4. Angle chasing. Cyclic quadrilaterals (2	Lecture, description,	
lecture)	exemplifications by	
	using multimedia	
	tools	
5. The power of a point with respect to a circle	Lecture, description,	
(1 lecture)	exemplifications by	
	using multimedia	
	tools	
6. The radical axis of two circles (1 lecture)	Lecture, description,	
	exemplifications by	

	using multimedia tools
7. Isometries and affine transformations in the plane (2 lectures)	Lecture, description, exemplifications by using multimedia tools
8. Homothethy (1 lecture)	Lecture, description, exemplifications by using multimedia tools
9. Spiral similarity (1 lecture)	Lecture, description, exemplifications by using multimedia tools
10. Inversion (1 lecture)	Lecture, description, exemplifications by using multimedia tools

Bibliography

- 1. D. Andrica Geometrie. Teme pentru perfectionarea profesorilor de matematică, Casa cărții de știință, Cluj-Napoca, 2017
- 2. D. Andrica, Cs. Varga, D. Văcărețu, Teme și probleme alese de geometrie, Ed. Plus, București, 2002.
- 3. T. Andreescu, M. Rolinek, J. Tkadlec, 106 Problems from the AwesomeMath Summer Program, XYZ Press, 2013.
- 4. T. Andreescu, M. Rolinek, J. Tkadlec, 107 Problems from the AwesomeMath Summer Program, XYZ Press, 2014.
- 5. M. Berger Geometry (vol. I and II), Springer, 1987
- 6. P.A. Blaga Geometrie si grafica I (lecture notes available on the author website)
- 7. C. Mihailescu The Geometry of Remarkable Elements: Points, Lines and Circles, XYZ Press 2016.

8.2 Seminar / laboratory	Teaching methods Remarks
1. Problems using Menelaus Theorem (1	Description,
seminar)	explanation,
	independent and/or
	team study
2. Problems using Ceva's theorem (1 seminar)	Description,
	explanation,
	independent and/or
	team study
3. Applications of cosine theorem, Stewarts'	Description,
theorem and various problems involving	explanation,
metric computations in a triangle (2 seminars)	independent and/or
	team study
4. Problems with angle chasing and cyclic	Description,
quadrilaterals (2 seminars)	explanation,
	independent and/or
	team study
5. Problems using the power of a and the	Description,
concept of radical axis (2 seminars)	explanation,

	independent and/or
	team study
6. Problems using affine transformations (2	Description,
seminars)	explanation,
	independent and/or
	team study
7. Problems using homothethy (1 seminar)	Description,
	explanation,
	independent and/or
	team study
8. Problems using spiral similarity (1 seminar)	Description,
	explanation,
	independent and/or
	team study
9. Problems using homothethy (1 seminar)	Description,
	explanation,
	independent and/or
	team study
10. Problems using inversion (1 seminar)	Description,
	explanation,
	independent and/or
	team study

Bibliography

- 1. D. Andrica Geometrie. Teme pentru perfectionarea profesorilor de matematică, Casa cărții de știință, Cluj-Napoca, 2017
- 2. D. Andrica, Cs. Varga, D. Văcărețu, Teme și probleme alese de geometrie, Ed. Plus, București, 2002.
- 3. T. Andreescu, M. Rolinek, J. Tkadlec, 106 Problems from the AwesomeMath Summer Program, XYZ Press, 2013.
- 4. T. Andreescu, M. Rolinek, J. Tkadlec, 107 Problems from the AwesomeMath Summer Program, XYZ Press, 2014.
- 5. M. Berger Geometry (vol. I and II), Springer, 1987
- 6. P.A. Blaga Geometrie si grafica I (lecture notes available on the author website)
- 7. C. Mihailescu The Geometry of Remarkable Elements: Points, Lines and Circles, XYZ Press 2016.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

• The notions assimilated are essential for any prospective mathematician or math teacher. Moreover, these competencies are very useful in activities related to computer graphics, computer aided geometric design or machine learning.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	Critical grasp of the learned material, ability to use what was learned	Test in week 5	25%

	Critical grasp of the	Test in the last week of the	50%
	learned material, ability to	semester	
	use what was learned		
10.5 Seminar/lab	Active participation at the	Discussions in the seminars	
activities	seminars, ability to use		
	the methods learned		
		Homework	25%

10.6 Minimum performance standards

- The student should attend at least 75% of the seminaries.
- The grade of the written test at the end of the semester should be at least 5 and the weighted average of all grades should be at least 5.

Date Signature of course coordinator April 29, 2022

Lect. dr. George Țurcaș

Signature of seminar coordinator Lect. dr. George Țurcaș

Date of approval April 29, 2022

Signature of the head of department Prof. dr. Octavian Agratini