SYLLABUS

1. Information regarding the programme

1.1 Higher education	Babeş Bolyai University
institution	
1.2 Faculty	Faculty of Mathematics and Computer Science
1.3 Department	Mathematics
1.4 Field of study	Mathematics
1.5 Study cycle	Bachelor
1.6 Study programme /	Mathematics and Computer Science
Qualification	

2. Information regarding the discipline

2.1 Name of the discipline Numerical Analysis									
2.2 Course coordinator Assoc. Prof. Teodora Catinas									
2.3 Seminar coordinator				Assoc. Prof. Teodora Catinas					
2.4. Year of	2	2.5	4	2.6. Type ofE2.7 Type ofCompulsory					
study		Semester		evaluation discipline					

3. Total estimated time (hours/semester of didactic activities)

3.1 Hours per week	5	Of which: 3.2 course	2	3.3	1+2
				seminar/laboratory	
3.4 Total hours in the curriculum	70	Of which: 3.5 course	28	3.6	42
				seminar/laboratory	
Time allotment:					
Learning using manual, course support, bibliography, course notes					
Additional documentation (in libraries, on electronic platforms, field documentation)					
Preparation for seminars/labs, homework, papers, portfolios and essays					15
Tutorship					10
Evaluations					5
Other activities:					-
3.7 Total individual study hours 80					

5.7 Total marvidual study nouis	00
3.8 Total hours per semester	150
3.9 Number of ECTS credits	6

4. Prerequisites (if necessary)

4.1. curriculum	•
4.2. competencies	• Knowledge of main notions and procedures of numerical analysis and the ability to work with them. Programming skills in MATLAB for implementing numerical algorithms.

5. Conditions (if necessary)

5.1. for the course	•
5.2. for the seminar /lab activities	• Laboratory with computers.

6. Specific competencies acquired

•• ~ r		· · · · · · · · · · · · · · · · · · ·
		C3.1 Description of concepts, theory and models used in application domain
	C3.2 Identify and explain the basic computer science models corresponding to application	
\$		domain
na cie	cie	C3.3 Use of computer science and mathematical models and tools for solving specific problems
sio	ten	in the application field
fes	pe	C3.4 Data and model analysis
Professional competencies		C4.1 Defining basic concepts, theory and mathematical models
P	C	C4.2 Interpretation of mathematical models
		C4.3 Identifying the appropriate models and methods for solving real-life problems
		C4.5 Embedding formal models in applications from various areas
		CT1 Application of efficient and organized work rules, of responsible attitudes towards the
Π	les	didactic-scientific domain, to creatively value one's own potential, with the respect towards the
rsa	nci	principles and norms of professional etic.
Transversal competencies		CT3 Use of efficient methods and techniques to learn, inform, research and develop the abilities
		to value the knowledge, to adapt to requirements of a dynamic society and to communicate in
ľr	CON	Romanian language and in a language of international circulation.
L .	•	

7. Objectives of the discipline (outcome of the acquired competencies)

7.1 General objective of the discipline	 Be able to understand and use basic concepts of Numerical Analysis Be able to implement numerical algorithms in order to solve practical problems.
7.2 Specific objective of the discipline	 Acquire theoretical and practical knowledge about the basic numerical algorithms regarding approximation of functions, numerical integration of functions, numerical solving of linear/nonlinear systems of equations and differential equations. Ability to apply numerical algorithms to solve practical and real life problems.

8. Content

8. Content						
8.1 Course	Teaching methods	Remarks				
1. Introductive notions. Finite and divided	Exposure: description,					
differences (definitions and properties).	explanation, examples.					
Taylor's formula.						
2. Lagrange interpolation: interpolation	Exposure: description,					
polynomial, interpolation formula, study of	explanation, examples,					
the error.	proofs.					
3. Lagrange interpolation: Neville's and	Exposure: description,					
Aitken's algorithms, Newton's formula.	explanation, examples.					
4. Hermite interpolation: interpolation	Exposure: description,					
polynomial, interpolation formula, study of	explanation, examples,					
the error. Hermite interpolation with double	proofs.					
nodes.						
5. Birkhoff interpolation: interpolation	Exposure: description,					
polynomial, interpolation formula, study of	explanation, examples,					
the error.	proofs.					
6. Spline interpolation method. Least squares	Exposure: description,					
approximation.	explanation, examples,					
	proofs, dialogue.					

		1						
7. Numerical differentiation and integration	Exposure: description,							
(introductive notions). Newton-Cotes	explanation, examples.							
quadrature formulas. Repeated quadrature								
formulas.								
8. Romberg's algorithm. Adaptive quadratures	Exposure: description,							
formulas. General quadrature formulas.	explanation, examples.							
Gauss-type quadrature formulas.								
9. Numerical methods for solving linear systems	Exposure: description,							
- direct methods (Gauss, Gauss-Jordan).	explanation, examples.							
Conditioning of a linear system.								
10. Numerical methods for solving linear systems	Exposure: description,							
- direct methods (LU-methods).	explanation, examples.							
11. Numerical methods for solving linear systems	Exposure: description,							
- iterative methods (Jacobi, Gauss-Seidel,	explanation, examples.							
SOR).	explanation, examples.							
· · · · · · · · · · · · · · · · · · ·	Europauras description							
12. Methods for solving nonlinear equations in R:	Exposure: description,							
one-step methods (Newton (tangent) method,	explanation, examples,							
succesive approximation method).	proofs.							
13. Methods for solving nonlinear equations in R:	Exposure: description,							
multi-step methods (secant, bisection and	explanation, examples.							
false position methods). Inverse interpolation.								
14. Methods for solving nonlinear systems of	Exposure: description,							
equations.	explanation, examples.							
Bibliography								
1. O. Agratini, I. Chiorean, Gh. Coman, R.T. Trîmb	oitaș, <i>Analiză Numerică și T</i>	eoria Aproximării, vol.						
III, Ed. Presa Univ. Clujeană, 2002;								
2. R. L. Burden, J. D. Faires, Numerical Analysis, F	WS Publishing Company, 1	1985.						
3. I. Chiorean, T. Cătinaș, R. Trîmbitaș, Analiză nu.	merică, Ed. Presa Univ. Clu	jeană, 2010.						
4. Gh. Coman, T. Cătinaș, și alții, <i>Interpolation operators</i> , Ed. Casa Cărții de Știință, Cluj-Napoca,								
2004.	, s ,	· · · ·						
5. Gh. Coman, I. Chiorean, T. Cătinaș, <i>Numerical Analysis. An Advanced Course</i> , Ed. Presa Univ.								
Clujeană, 2007.	2	,						
6. S. D. Conte, Carl de Boor, <i>ELEMENTARY NUM</i>	FRICAL ANALYSIS An Alo	orithmic Approach						
SIAM, 2017.		or thanke Hpprotech,						
7. W. Gander, M.J. Gander, F. Kwok, <i>Scientific Co</i>	mouting Springer Internet	Publishing 2014						
8. D.D. Stancu, Gh. Coman, O. Agratini, R. Trimbi								
Ed. Presa Univ. Clujeană, 2001;	tas, Anuliza Ivamerica și Teo	они Арголітини, voi. 1,						
	ouică și Toovia Arnovimănii	wol II Ed Drace Univ						
9. D.D. Stancu, Gh. Coman, P. Blaga, <i>Analiză Num</i>	erica și Teoria Aproximarii	, vol. II, Ed. Flesa Ulliv.						
Clujeană, 2002;								
10. R. Trîmbitaş, <i>Numerical Analysis</i> , Ed. Presa Unit		Demender						
8.2 Seminary/Laboratory	Teaching methods	Remarks						
1. Introductory examples and problems in	Explanation, dialogue.							
Matlab.								
2. Problems with orthogonal polynomials and	Explanation, dialogue,							
Taylor polynomials. Computation of finite	examples.							
and divided differences.								
3. Lagrange interpolation. Computation of	Explanation, dialogue,							
Lagrange polynomial using barycentric	practical examples.							
formula.	-							
4. Applied problems to Lagrange interpolation	Explanation, dialogue,							
using Neville's and Aitken's algorithms.	practical examples.							
o angerianti	Evaluation.							

5. Applied problems to Newton's method.	Explanation, dialogue, practical examples.
	Evaluation.
6. Applied problems to Hermite interpolation.	Explanation, dialogue,
0. Applied problems to Hermite interpolation.	
	practical examples.
	Evaluation.
7. Applied problems to spline interpolation.	Explanation, dialogue,
	practical examples.
	Evaluation.
8. Applied problems to least squares	Explanation, dialogue,
approximation method.	practical examples.
9. Problems with simple and repeated	Explanation, dialogue,
integration formulas and with Romberg's	examples. Evaluation.
algorithm.	·······
10. Applied problems to Gauss type quadrature	Explanation, dialogue,
formulas and adaptive quadratures.	examples.
<u> </u>	1
11. Solving linear systems using direct methods.	Explanation, dialogue,
	practical examples.
	Evaluation.
12. Study of perturbations of a linear system.	Explanation, dialogue,
	examples. Evaluation.
13. Solving linear systems using iterative	Explanation, dialogue,
methods.	practical examples.
	Evaluation.
14. Solving nonlinear equations using one-step	Explanation, dialogue,
and multi-step methods.	practical examples.
and mater step methods.	Evaluation.
Dibliggraphy	
Bibliography	

Bibliography

1 R. L. Burden, J. D. Faires, *Numerical Analysis*, PWS Publishing Company, 1985.

2 R. Trîmbitaş, Numerical Analysis, Ed. Presa Univ. Clujeană, 2007.

9. Corroborating the content of the discipline with the expectations of the epistemic community, professional associations and representative employers within the field of the program

- The course exists in the studying program of all major universities in Romania and abroad;
- The content of the course is important for seeing the application of mathematical knowledge in solving practical and real life problems.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Share in the grade (%)
10.4 Course	 know the basic principles of Numerical Analysis; apply the course concepts problem solving 	Written exam	60%
10.5 Seminar/lab	- be able to implement	Evaluation and continuous	Lab 30%
activities	course concepts and	observations during the	Seminary 10%
	algorithms	semester.	

	- apply techniques for different practical problems				
10.6 Minimum performance standards					
At least grade 5 (from a scale of 1 to 10) at both written exam and laboratory work.					
Date	Signature of course	Signature of course coordinator		seminar coordinator	
15.04.2023	Conf. Dr. Teodora	Conf. Dr. Teodora Cătinaș		Conf. Dr. Teodora Cătinaș	

Date of approval

Signature of the head of department

Prof. Dr. Andrei Mărcuş